Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments

Eukaryotic ribosomal RNA genes contain rapidly evolving regions of unknown function termed expansion segments. We present the comparative analysis of the primary and secondary structure of two expansion segments from the large subunit rRNA gene of ten species of Drosophila and the tsetse fly species...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 1991-06, Vol.219 (3), p.381-390
Hauptverfasser: Linares, Andrés Ruiz, Hancock, John M., Dover, Gabriel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 3
container_start_page 381
container_title Journal of molecular biology
container_volume 219
creator Linares, Andrés Ruiz
Hancock, John M.
Dover, Gabriel A.
description Eukaryotic ribosomal RNA genes contain rapidly evolving regions of unknown function termed expansion segments. We present the comparative analysis of the primary and secondary structure of two expansion segments from the large subunit rRNA gene of ten species of Drosophila and the tsetse fly species Glossina morsitans morsitans. At the primary sequence level, most of the differences observed in the sequences obtained are single base substitutions. This is in marked contrast with observations in vertebrate species in which the insertion or deletion of repetitive motifs, probably generated by a DNA-slippage mechanism, is a major factor in the evolution of these regions. The secondary structure of the two regions, supported by multiple compensatory base changes, is highly conserved between the species examined and supports the existence of a general folding pattern for all eukaryotes. Intriguingly, the evolutionary rate of expansion segments is very slow relative to other genic and non-genic regions of the Drosophila genome. These results suggest that the evolution of expansion segments in the rDNA multigene family is a balance between the homogenization of new mutations by unequal crossing over and a combination of selection against some such mutations per se and selection for subsequent compensatory mutations. in order to maintain a particular RNA secondary structure.
doi_str_mv 10.1016/0022-2836(91)90178-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80630323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022283691901789</els_id><sourcerecordid>80630323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-44c7e9da3b323e3c1c0e1a8c67347bccfa92f3df1a0e329115c51eadf0d10d833</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1EVZbCPwDhCwgOgZnYm7UvSFX5KFIFEkvPlteetEZJvLWTiv57HLICTj1Z43nmHfth7BnCWwRs3gHUdVUr0bzW-EYDblSlH7AVgtKVaoR6yFZ_kUfscc4_AWAtpDpmx6hBagkr5rfk4uBtuuN5TJMbp0S83JTChmHMPA58vCZOt7GbxlCq2PIPKea4vw6d5bXiW57Crlz0tuPfv55y-rW3Q57RTFc9lZAn7Ki1Xaanh_OEXX76-OPsvLr49vnL2elF5STiWEnpNqS9FTtRCxIOHRBa5ZqNkJudc63VdSt8ixZI1Bpx7dZI1rfgEbwS4oS9WnL3Kd5MlEfTh-yo6-xAccpGQSOgZBdQLqArP8mJWrNPoS8SDIKZ5ZrZnJnNGY3mj1yjy9jzQ_6068n_G1pslv7LQ99mZ7s22cGF_B_WaCX1vP7FwrU2GnuVCnO5rQFF2SNq2ahCvF8IKrpuAyWTXaDBkQ-J3Gh8DPc_9Td_w6AO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80630323</pqid></control><display><type>article</type><title>Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Linares, Andrés Ruiz ; Hancock, John M. ; Dover, Gabriel A.</creator><creatorcontrib>Linares, Andrés Ruiz ; Hancock, John M. ; Dover, Gabriel A.</creatorcontrib><description>Eukaryotic ribosomal RNA genes contain rapidly evolving regions of unknown function termed expansion segments. We present the comparative analysis of the primary and secondary structure of two expansion segments from the large subunit rRNA gene of ten species of Drosophila and the tsetse fly species Glossina morsitans morsitans. At the primary sequence level, most of the differences observed in the sequences obtained are single base substitutions. This is in marked contrast with observations in vertebrate species in which the insertion or deletion of repetitive motifs, probably generated by a DNA-slippage mechanism, is a major factor in the evolution of these regions. The secondary structure of the two regions, supported by multiple compensatory base changes, is highly conserved between the species examined and supports the existence of a general folding pattern for all eukaryotes. Intriguingly, the evolutionary rate of expansion segments is very slow relative to other genic and non-genic regions of the Drosophila genome. These results suggest that the evolution of expansion segments in the rDNA multigene family is a balance between the homogenization of new mutations by unequal crossing over and a combination of selection against some such mutations per se and selection for subsequent compensatory mutations. in order to maintain a particular RNA secondary structure.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/0022-2836(91)90178-9</identifier><identifier>PMID: 1904940</identifier><identifier>CODEN: JMOBAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Base Sequence ; Biological and medical sciences ; Biological Evolution ; Chromosome Mapping ; DNA, Ribosomal - chemistry ; DNA, Ribosomal - genetics ; Drosophila ; Drosophila - genetics ; Drosophila melanogaster - genetics ; eukaryotic cells ; evolution ; expansion segments ; Fundamental and applied biological sciences. Psychology ; genes ; Genetics of eukaryotes. Biological and molecular evolution ; genomics ; Glossina morsitans morsitans ; Models, Molecular ; molecular conformation ; Molecular Sequence Data ; Multigene Family ; mutation ; Nucleic Acid Conformation ; nucleotide sequences ; ribosomal RNA ; RNA, Ribosomal, 28S - chemistry ; RNA, Ribosomal, 28S - genetics ; rRNA evolution ; secondary structure ; Sequence Homology, Nucleic Acid ; Space life sciences</subject><ispartof>Journal of molecular biology, 1991-06, Vol.219 (3), p.381-390</ispartof><rights>1991</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-44c7e9da3b323e3c1c0e1a8c67347bccfa92f3df1a0e329115c51eadf0d10d833</citedby><cites>FETCH-LOGICAL-c411t-44c7e9da3b323e3c1c0e1a8c67347bccfa92f3df1a0e329115c51eadf0d10d833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0022283691901789$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19698493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1904940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Linares, Andrés Ruiz</creatorcontrib><creatorcontrib>Hancock, John M.</creatorcontrib><creatorcontrib>Dover, Gabriel A.</creatorcontrib><title>Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Eukaryotic ribosomal RNA genes contain rapidly evolving regions of unknown function termed expansion segments. We present the comparative analysis of the primary and secondary structure of two expansion segments from the large subunit rRNA gene of ten species of Drosophila and the tsetse fly species Glossina morsitans morsitans. At the primary sequence level, most of the differences observed in the sequences obtained are single base substitutions. This is in marked contrast with observations in vertebrate species in which the insertion or deletion of repetitive motifs, probably generated by a DNA-slippage mechanism, is a major factor in the evolution of these regions. The secondary structure of the two regions, supported by multiple compensatory base changes, is highly conserved between the species examined and supports the existence of a general folding pattern for all eukaryotes. Intriguingly, the evolutionary rate of expansion segments is very slow relative to other genic and non-genic regions of the Drosophila genome. These results suggest that the evolution of expansion segments in the rDNA multigene family is a balance between the homogenization of new mutations by unequal crossing over and a combination of selection against some such mutations per se and selection for subsequent compensatory mutations. in order to maintain a particular RNA secondary structure.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>Chromosome Mapping</subject><subject>DNA, Ribosomal - chemistry</subject><subject>DNA, Ribosomal - genetics</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila melanogaster - genetics</subject><subject>eukaryotic cells</subject><subject>evolution</subject><subject>expansion segments</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genes</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>genomics</subject><subject>Glossina morsitans morsitans</subject><subject>Models, Molecular</subject><subject>molecular conformation</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>mutation</subject><subject>Nucleic Acid Conformation</subject><subject>nucleotide sequences</subject><subject>ribosomal RNA</subject><subject>RNA, Ribosomal, 28S - chemistry</subject><subject>RNA, Ribosomal, 28S - genetics</subject><subject>rRNA evolution</subject><subject>secondary structure</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Space life sciences</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi1EVZbCPwDhCwgOgZnYm7UvSFX5KFIFEkvPlteetEZJvLWTiv57HLICTj1Z43nmHfth7BnCWwRs3gHUdVUr0bzW-EYDblSlH7AVgtKVaoR6yFZ_kUfscc4_AWAtpDpmx6hBagkr5rfk4uBtuuN5TJMbp0S83JTChmHMPA58vCZOt7GbxlCq2PIPKea4vw6d5bXiW57Crlz0tuPfv55y-rW3Q57RTFc9lZAn7Ki1Xaanh_OEXX76-OPsvLr49vnL2elF5STiWEnpNqS9FTtRCxIOHRBa5ZqNkJudc63VdSt8ixZI1Bpx7dZI1rfgEbwS4oS9WnL3Kd5MlEfTh-yo6-xAccpGQSOgZBdQLqArP8mJWrNPoS8SDIKZ5ZrZnJnNGY3mj1yjy9jzQ_6068n_G1pslv7LQ99mZ7s22cGF_B_WaCX1vP7FwrU2GnuVCnO5rQFF2SNq2ahCvF8IKrpuAyWTXaDBkQ-J3Gh8DPc_9Td_w6AO</recordid><startdate>19910605</startdate><enddate>19910605</enddate><creator>Linares, Andrés Ruiz</creator><creator>Hancock, John M.</creator><creator>Dover, Gabriel A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19910605</creationdate><title>Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments</title><author>Linares, Andrés Ruiz ; Hancock, John M. ; Dover, Gabriel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-44c7e9da3b323e3c1c0e1a8c67347bccfa92f3df1a0e329115c51eadf0d10d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>Chromosome Mapping</topic><topic>DNA, Ribosomal - chemistry</topic><topic>DNA, Ribosomal - genetics</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila melanogaster - genetics</topic><topic>eukaryotic cells</topic><topic>evolution</topic><topic>expansion segments</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genes</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>genomics</topic><topic>Glossina morsitans morsitans</topic><topic>Models, Molecular</topic><topic>molecular conformation</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>mutation</topic><topic>Nucleic Acid Conformation</topic><topic>nucleotide sequences</topic><topic>ribosomal RNA</topic><topic>RNA, Ribosomal, 28S - chemistry</topic><topic>RNA, Ribosomal, 28S - genetics</topic><topic>rRNA evolution</topic><topic>secondary structure</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Space life sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linares, Andrés Ruiz</creatorcontrib><creatorcontrib>Hancock, John M.</creatorcontrib><creatorcontrib>Dover, Gabriel A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linares, Andrés Ruiz</au><au>Hancock, John M.</au><au>Dover, Gabriel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>1991-06-05</date><risdate>1991</risdate><volume>219</volume><issue>3</issue><spage>381</spage><epage>390</epage><pages>381-390</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><coden>JMOBAK</coden><abstract>Eukaryotic ribosomal RNA genes contain rapidly evolving regions of unknown function termed expansion segments. We present the comparative analysis of the primary and secondary structure of two expansion segments from the large subunit rRNA gene of ten species of Drosophila and the tsetse fly species Glossina morsitans morsitans. At the primary sequence level, most of the differences observed in the sequences obtained are single base substitutions. This is in marked contrast with observations in vertebrate species in which the insertion or deletion of repetitive motifs, probably generated by a DNA-slippage mechanism, is a major factor in the evolution of these regions. The secondary structure of the two regions, supported by multiple compensatory base changes, is highly conserved between the species examined and supports the existence of a general folding pattern for all eukaryotes. Intriguingly, the evolutionary rate of expansion segments is very slow relative to other genic and non-genic regions of the Drosophila genome. These results suggest that the evolution of expansion segments in the rDNA multigene family is a balance between the homogenization of new mutations by unequal crossing over and a combination of selection against some such mutations per se and selection for subsequent compensatory mutations. in order to maintain a particular RNA secondary structure.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>1904940</pmid><doi>10.1016/0022-2836(91)90178-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 1991-06, Vol.219 (3), p.381-390
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_80630323
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Base Sequence
Biological and medical sciences
Biological Evolution
Chromosome Mapping
DNA, Ribosomal - chemistry
DNA, Ribosomal - genetics
Drosophila
Drosophila - genetics
Drosophila melanogaster - genetics
eukaryotic cells
evolution
expansion segments
Fundamental and applied biological sciences. Psychology
genes
Genetics of eukaryotes. Biological and molecular evolution
genomics
Glossina morsitans morsitans
Models, Molecular
molecular conformation
Molecular Sequence Data
Multigene Family
mutation
Nucleic Acid Conformation
nucleotide sequences
ribosomal RNA
RNA, Ribosomal, 28S - chemistry
RNA, Ribosomal, 28S - genetics
rRNA evolution
secondary structure
Sequence Homology, Nucleic Acid
Space life sciences
title Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20structure%20constraints%20on%20the%20evolution%20of%20Drosophila%2028%20S%20ribosomal%20RNA%20expansion%20segments&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Linares,%20Andr%C3%A9s%20Ruiz&rft.date=1991-06-05&rft.volume=219&rft.issue=3&rft.spage=381&rft.epage=390&rft.pages=381-390&rft.issn=0022-2836&rft.eissn=1089-8638&rft.coden=JMOBAK&rft_id=info:doi/10.1016/0022-2836(91)90178-9&rft_dat=%3Cproquest_cross%3E80630323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80630323&rft_id=info:pmid/1904940&rft_els_id=0022283691901789&rfr_iscdi=true