Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments
Eukaryotic ribosomal RNA genes contain rapidly evolving regions of unknown function termed expansion segments. We present the comparative analysis of the primary and secondary structure of two expansion segments from the large subunit rRNA gene of ten species of Drosophila and the tsetse fly species...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 1991-06, Vol.219 (3), p.381-390 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 390 |
---|---|
container_issue | 3 |
container_start_page | 381 |
container_title | Journal of molecular biology |
container_volume | 219 |
creator | Linares, Andrés Ruiz Hancock, John M. Dover, Gabriel A. |
description | Eukaryotic ribosomal RNA genes contain rapidly evolving regions of unknown function termed expansion segments. We present the comparative analysis of the primary and secondary structure of two expansion segments from the large subunit rRNA gene of ten species of
Drosophila and the tsetse fly species
Glossina morsitans morsitans. At the primary sequence level, most of the differences observed in the sequences obtained are single base substitutions. This is in marked contrast with observations in vertebrate species in which the insertion or deletion of repetitive motifs, probably generated by a DNA-slippage mechanism, is a major factor in the evolution of these regions. The secondary structure of the two regions, supported by multiple compensatory base changes, is highly conserved between the species examined and supports the existence of a general folding pattern for all eukaryotes. Intriguingly, the evolutionary rate of expansion segments is very slow relative to other genic and non-genic regions of the
Drosophila genome. These results suggest that the evolution of expansion segments in the rDNA multigene family is a balance between the homogenization of new mutations by unequal crossing over and a combination of selection against some such mutations
per se and selection for subsequent compensatory mutations. in order to maintain a particular RNA secondary structure. |
doi_str_mv | 10.1016/0022-2836(91)90178-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80630323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022283691901789</els_id><sourcerecordid>80630323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-44c7e9da3b323e3c1c0e1a8c67347bccfa92f3df1a0e329115c51eadf0d10d833</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1EVZbCPwDhCwgOgZnYm7UvSFX5KFIFEkvPlteetEZJvLWTiv57HLICTj1Z43nmHfth7BnCWwRs3gHUdVUr0bzW-EYDblSlH7AVgtKVaoR6yFZ_kUfscc4_AWAtpDpmx6hBagkr5rfk4uBtuuN5TJMbp0S83JTChmHMPA58vCZOt7GbxlCq2PIPKea4vw6d5bXiW57Crlz0tuPfv55y-rW3Q57RTFc9lZAn7Ki1Xaanh_OEXX76-OPsvLr49vnL2elF5STiWEnpNqS9FTtRCxIOHRBa5ZqNkJudc63VdSt8ixZI1Bpx7dZI1rfgEbwS4oS9WnL3Kd5MlEfTh-yo6-xAccpGQSOgZBdQLqArP8mJWrNPoS8SDIKZ5ZrZnJnNGY3mj1yjy9jzQ_6068n_G1pslv7LQ99mZ7s22cGF_B_WaCX1vP7FwrU2GnuVCnO5rQFF2SNq2ahCvF8IKrpuAyWTXaDBkQ-J3Gh8DPc_9Td_w6AO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80630323</pqid></control><display><type>article</type><title>Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Linares, Andrés Ruiz ; Hancock, John M. ; Dover, Gabriel A.</creator><creatorcontrib>Linares, Andrés Ruiz ; Hancock, John M. ; Dover, Gabriel A.</creatorcontrib><description>Eukaryotic ribosomal RNA genes contain rapidly evolving regions of unknown function termed expansion segments. We present the comparative analysis of the primary and secondary structure of two expansion segments from the large subunit rRNA gene of ten species of
Drosophila and the tsetse fly species
Glossina morsitans morsitans. At the primary sequence level, most of the differences observed in the sequences obtained are single base substitutions. This is in marked contrast with observations in vertebrate species in which the insertion or deletion of repetitive motifs, probably generated by a DNA-slippage mechanism, is a major factor in the evolution of these regions. The secondary structure of the two regions, supported by multiple compensatory base changes, is highly conserved between the species examined and supports the existence of a general folding pattern for all eukaryotes. Intriguingly, the evolutionary rate of expansion segments is very slow relative to other genic and non-genic regions of the
Drosophila genome. These results suggest that the evolution of expansion segments in the rDNA multigene family is a balance between the homogenization of new mutations by unequal crossing over and a combination of selection against some such mutations
per se and selection for subsequent compensatory mutations. in order to maintain a particular RNA secondary structure.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/0022-2836(91)90178-9</identifier><identifier>PMID: 1904940</identifier><identifier>CODEN: JMOBAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Base Sequence ; Biological and medical sciences ; Biological Evolution ; Chromosome Mapping ; DNA, Ribosomal - chemistry ; DNA, Ribosomal - genetics ; Drosophila ; Drosophila - genetics ; Drosophila melanogaster - genetics ; eukaryotic cells ; evolution ; expansion segments ; Fundamental and applied biological sciences. Psychology ; genes ; Genetics of eukaryotes. Biological and molecular evolution ; genomics ; Glossina morsitans morsitans ; Models, Molecular ; molecular conformation ; Molecular Sequence Data ; Multigene Family ; mutation ; Nucleic Acid Conformation ; nucleotide sequences ; ribosomal RNA ; RNA, Ribosomal, 28S - chemistry ; RNA, Ribosomal, 28S - genetics ; rRNA evolution ; secondary structure ; Sequence Homology, Nucleic Acid ; Space life sciences</subject><ispartof>Journal of molecular biology, 1991-06, Vol.219 (3), p.381-390</ispartof><rights>1991</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-44c7e9da3b323e3c1c0e1a8c67347bccfa92f3df1a0e329115c51eadf0d10d833</citedby><cites>FETCH-LOGICAL-c411t-44c7e9da3b323e3c1c0e1a8c67347bccfa92f3df1a0e329115c51eadf0d10d833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0022283691901789$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19698493$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1904940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Linares, Andrés Ruiz</creatorcontrib><creatorcontrib>Hancock, John M.</creatorcontrib><creatorcontrib>Dover, Gabriel A.</creatorcontrib><title>Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Eukaryotic ribosomal RNA genes contain rapidly evolving regions of unknown function termed expansion segments. We present the comparative analysis of the primary and secondary structure of two expansion segments from the large subunit rRNA gene of ten species of
Drosophila and the tsetse fly species
Glossina morsitans morsitans. At the primary sequence level, most of the differences observed in the sequences obtained are single base substitutions. This is in marked contrast with observations in vertebrate species in which the insertion or deletion of repetitive motifs, probably generated by a DNA-slippage mechanism, is a major factor in the evolution of these regions. The secondary structure of the two regions, supported by multiple compensatory base changes, is highly conserved between the species examined and supports the existence of a general folding pattern for all eukaryotes. Intriguingly, the evolutionary rate of expansion segments is very slow relative to other genic and non-genic regions of the
Drosophila genome. These results suggest that the evolution of expansion segments in the rDNA multigene family is a balance between the homogenization of new mutations by unequal crossing over and a combination of selection against some such mutations
per se and selection for subsequent compensatory mutations. in order to maintain a particular RNA secondary structure.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>Chromosome Mapping</subject><subject>DNA, Ribosomal - chemistry</subject><subject>DNA, Ribosomal - genetics</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila melanogaster - genetics</subject><subject>eukaryotic cells</subject><subject>evolution</subject><subject>expansion segments</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genes</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>genomics</subject><subject>Glossina morsitans morsitans</subject><subject>Models, Molecular</subject><subject>molecular conformation</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>mutation</subject><subject>Nucleic Acid Conformation</subject><subject>nucleotide sequences</subject><subject>ribosomal RNA</subject><subject>RNA, Ribosomal, 28S - chemistry</subject><subject>RNA, Ribosomal, 28S - genetics</subject><subject>rRNA evolution</subject><subject>secondary structure</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Space life sciences</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi1EVZbCPwDhCwgOgZnYm7UvSFX5KFIFEkvPlteetEZJvLWTiv57HLICTj1Z43nmHfth7BnCWwRs3gHUdVUr0bzW-EYDblSlH7AVgtKVaoR6yFZ_kUfscc4_AWAtpDpmx6hBagkr5rfk4uBtuuN5TJMbp0S83JTChmHMPA58vCZOt7GbxlCq2PIPKea4vw6d5bXiW57Crlz0tuPfv55y-rW3Q57RTFc9lZAn7Ki1Xaanh_OEXX76-OPsvLr49vnL2elF5STiWEnpNqS9FTtRCxIOHRBa5ZqNkJudc63VdSt8ixZI1Bpx7dZI1rfgEbwS4oS9WnL3Kd5MlEfTh-yo6-xAccpGQSOgZBdQLqArP8mJWrNPoS8SDIKZ5ZrZnJnNGY3mj1yjy9jzQ_6068n_G1pslv7LQ99mZ7s22cGF_B_WaCX1vP7FwrU2GnuVCnO5rQFF2SNq2ahCvF8IKrpuAyWTXaDBkQ-J3Gh8DPc_9Td_w6AO</recordid><startdate>19910605</startdate><enddate>19910605</enddate><creator>Linares, Andrés Ruiz</creator><creator>Hancock, John M.</creator><creator>Dover, Gabriel A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19910605</creationdate><title>Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments</title><author>Linares, Andrés Ruiz ; Hancock, John M. ; Dover, Gabriel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-44c7e9da3b323e3c1c0e1a8c67347bccfa92f3df1a0e329115c51eadf0d10d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>Chromosome Mapping</topic><topic>DNA, Ribosomal - chemistry</topic><topic>DNA, Ribosomal - genetics</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila melanogaster - genetics</topic><topic>eukaryotic cells</topic><topic>evolution</topic><topic>expansion segments</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genes</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>genomics</topic><topic>Glossina morsitans morsitans</topic><topic>Models, Molecular</topic><topic>molecular conformation</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>mutation</topic><topic>Nucleic Acid Conformation</topic><topic>nucleotide sequences</topic><topic>ribosomal RNA</topic><topic>RNA, Ribosomal, 28S - chemistry</topic><topic>RNA, Ribosomal, 28S - genetics</topic><topic>rRNA evolution</topic><topic>secondary structure</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Space life sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linares, Andrés Ruiz</creatorcontrib><creatorcontrib>Hancock, John M.</creatorcontrib><creatorcontrib>Dover, Gabriel A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linares, Andrés Ruiz</au><au>Hancock, John M.</au><au>Dover, Gabriel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>1991-06-05</date><risdate>1991</risdate><volume>219</volume><issue>3</issue><spage>381</spage><epage>390</epage><pages>381-390</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><coden>JMOBAK</coden><abstract>Eukaryotic ribosomal RNA genes contain rapidly evolving regions of unknown function termed expansion segments. We present the comparative analysis of the primary and secondary structure of two expansion segments from the large subunit rRNA gene of ten species of
Drosophila and the tsetse fly species
Glossina morsitans morsitans. At the primary sequence level, most of the differences observed in the sequences obtained are single base substitutions. This is in marked contrast with observations in vertebrate species in which the insertion or deletion of repetitive motifs, probably generated by a DNA-slippage mechanism, is a major factor in the evolution of these regions. The secondary structure of the two regions, supported by multiple compensatory base changes, is highly conserved between the species examined and supports the existence of a general folding pattern for all eukaryotes. Intriguingly, the evolutionary rate of expansion segments is very slow relative to other genic and non-genic regions of the
Drosophila genome. These results suggest that the evolution of expansion segments in the rDNA multigene family is a balance between the homogenization of new mutations by unequal crossing over and a combination of selection against some such mutations
per se and selection for subsequent compensatory mutations. in order to maintain a particular RNA secondary structure.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>1904940</pmid><doi>10.1016/0022-2836(91)90178-9</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 1991-06, Vol.219 (3), p.381-390 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_80630323 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Base Sequence Biological and medical sciences Biological Evolution Chromosome Mapping DNA, Ribosomal - chemistry DNA, Ribosomal - genetics Drosophila Drosophila - genetics Drosophila melanogaster - genetics eukaryotic cells evolution expansion segments Fundamental and applied biological sciences. Psychology genes Genetics of eukaryotes. Biological and molecular evolution genomics Glossina morsitans morsitans Models, Molecular molecular conformation Molecular Sequence Data Multigene Family mutation Nucleic Acid Conformation nucleotide sequences ribosomal RNA RNA, Ribosomal, 28S - chemistry RNA, Ribosomal, 28S - genetics rRNA evolution secondary structure Sequence Homology, Nucleic Acid Space life sciences |
title | Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20structure%20constraints%20on%20the%20evolution%20of%20Drosophila%2028%20S%20ribosomal%20RNA%20expansion%20segments&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Linares,%20Andr%C3%A9s%20Ruiz&rft.date=1991-06-05&rft.volume=219&rft.issue=3&rft.spage=381&rft.epage=390&rft.pages=381-390&rft.issn=0022-2836&rft.eissn=1089-8638&rft.coden=JMOBAK&rft_id=info:doi/10.1016/0022-2836(91)90178-9&rft_dat=%3Cproquest_cross%3E80630323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80630323&rft_id=info:pmid/1904940&rft_els_id=0022283691901789&rfr_iscdi=true |