A spectroscopic and conformational study of pertussis toxin

The conformation of native pertussis toxin has been investigated by secondary structure prediction and by circular dichroism, fluorescence and second‐derivative ultraviolet absorption spectroscopy. The far‐ultraviolet circular dichroic spectrum is characteristic of a protein of high β‐sheet and low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of biochemistry 1991-06, Vol.198 (3), p.741-747
Hauptverfasser: SEABROOK, Richard N., ATKINSON, Tony, IRONS, Laurence I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 747
container_issue 3
container_start_page 741
container_title European journal of biochemistry
container_volume 198
creator SEABROOK, Richard N.
ATKINSON, Tony
IRONS, Laurence I.
description The conformation of native pertussis toxin has been investigated by secondary structure prediction and by circular dichroism, fluorescence and second‐derivative ultraviolet absorption spectroscopy. The far‐ultraviolet circular dichroic spectrum is characteristic of a protein of high β‐sheet and low α‐helix content. This is also shown by an analysis of the circular dichroic spectrum with the Contin programme which indicates that the toxin possesses 53%β‐sheet, 10%α‐helix and 37%β‐turn/loop secondary structure. Second‐derivative ultraviolet absorption spectroscopy suggests that 34 tyrosine residues are solvent‐exposed and quenching of tryptophan fluorescence emission has shown that 4 tryptophan residues are accessible to iodide ions. One of these tryptophans appears to be in close proximity to a positively charged side‐chain, since only 3 tryptophans are accessible to caesium ion fluorescence quenching. When excited at 280 nm, the emission spectrum contains a significant contribution from tyrosine fluorescence, which may be a consequence of the high proportion (55%) of surface‐exposed tyrosines. No changes in the circular dichroic spectra of the toxin were found in the presence of the substrate NAD. However, NAD did quench both tyrosine and tryptophan fluorescence emission but did not change the shape of the emission spectrum, or the accessibility of the tryptophans to either the ionic fluorescence quenchers or the neutral quencher acrylamide.
doi_str_mv 10.1111/j.1432-1033.1991.tb16075.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80615694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80615694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4821-6e10fa491373c85e0322ea263615c4ed85435b952e3b1191d41983f756ed58173</originalsourceid><addsrcrecordid>eNqVkE1LwzAYx4Moc04_glBEvLXmyVsbPcgcmwoDD-o5pGkKHV1Tmxa3b2_Lyq7ic8nh_3te8kPoBnAEfd1vImCUhIApjUBKiNoUBI55tDtB02N0iqYYAwuJ5OIcXXi_wRgLKeIJmhDMMXCYosd54Gtr2sZ54-rCBLrKAuOq3DVb3Rau0mXg2y7bBy4Patu0nfeFD1q3K6pLdJbr0tur8Z2hr9Xyc_Eart9f3hbzdWhYQiAUFnCumQQaU5NwiykhVhNBBXDDbJZwRnkqObE0BZCQMZAJzWMubMYTiOkM3R3m1o377qxv1bbwxpalrqzrvEpwP0lI9ifYS-KMxEkPPhxA0__bNzZXdVNsdbNXgNWgWG3U4FENHtWgWI2K1a5vvh63dOnWZsfW0Wmf34659kaXeaMrU_gjxgUGIWmPPR2wn6K0-38coFbL54-YAf0FKG2Wlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16054278</pqid></control><display><type>article</type><title>A spectroscopic and conformational study of pertussis toxin</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>SEABROOK, Richard N. ; ATKINSON, Tony ; IRONS, Laurence I.</creator><creatorcontrib>SEABROOK, Richard N. ; ATKINSON, Tony ; IRONS, Laurence I.</creatorcontrib><description>The conformation of native pertussis toxin has been investigated by secondary structure prediction and by circular dichroism, fluorescence and second‐derivative ultraviolet absorption spectroscopy. The far‐ultraviolet circular dichroic spectrum is characteristic of a protein of high β‐sheet and low α‐helix content. This is also shown by an analysis of the circular dichroic spectrum with the Contin programme which indicates that the toxin possesses 53%β‐sheet, 10%α‐helix and 37%β‐turn/loop secondary structure. Second‐derivative ultraviolet absorption spectroscopy suggests that 34 tyrosine residues are solvent‐exposed and quenching of tryptophan fluorescence emission has shown that 4 tryptophan residues are accessible to iodide ions. One of these tryptophans appears to be in close proximity to a positively charged side‐chain, since only 3 tryptophans are accessible to caesium ion fluorescence quenching. When excited at 280 nm, the emission spectrum contains a significant contribution from tyrosine fluorescence, which may be a consequence of the high proportion (55%) of surface‐exposed tyrosines. No changes in the circular dichroic spectra of the toxin were found in the presence of the substrate NAD. However, NAD did quench both tyrosine and tryptophan fluorescence emission but did not change the shape of the emission spectrum, or the accessibility of the tryptophans to either the ionic fluorescence quenchers or the neutral quencher acrylamide.</description><identifier>ISSN: 0014-2956</identifier><identifier>EISSN: 1432-1033</identifier><identifier>DOI: 10.1111/j.1432-1033.1991.tb16075.x</identifier><identifier>PMID: 2050151</identifier><identifier>CODEN: EJBCAI</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Circular Dichroism ; Fundamental and applied biological sciences. Psychology ; Kinetics ; Miscellaneous ; NAD - pharmacology ; Pertussis Toxin ; Protein Conformation ; Proteins ; Spectrometry, Fluorescence ; Spectrophotometry, Ultraviolet ; toxins ; Virulence Factors, Bordetella - chemistry</subject><ispartof>European journal of biochemistry, 1991-06, Vol.198 (3), p.741-747</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4821-6e10fa491373c85e0322ea263615c4ed85435b952e3b1191d41983f756ed58173</citedby><cites>FETCH-LOGICAL-c4821-6e10fa491373c85e0322ea263615c4ed85435b952e3b1191d41983f756ed58173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5601693$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2050151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SEABROOK, Richard N.</creatorcontrib><creatorcontrib>ATKINSON, Tony</creatorcontrib><creatorcontrib>IRONS, Laurence I.</creatorcontrib><title>A spectroscopic and conformational study of pertussis toxin</title><title>European journal of biochemistry</title><addtitle>Eur J Biochem</addtitle><description>The conformation of native pertussis toxin has been investigated by secondary structure prediction and by circular dichroism, fluorescence and second‐derivative ultraviolet absorption spectroscopy. The far‐ultraviolet circular dichroic spectrum is characteristic of a protein of high β‐sheet and low α‐helix content. This is also shown by an analysis of the circular dichroic spectrum with the Contin programme which indicates that the toxin possesses 53%β‐sheet, 10%α‐helix and 37%β‐turn/loop secondary structure. Second‐derivative ultraviolet absorption spectroscopy suggests that 34 tyrosine residues are solvent‐exposed and quenching of tryptophan fluorescence emission has shown that 4 tryptophan residues are accessible to iodide ions. One of these tryptophans appears to be in close proximity to a positively charged side‐chain, since only 3 tryptophans are accessible to caesium ion fluorescence quenching. When excited at 280 nm, the emission spectrum contains a significant contribution from tyrosine fluorescence, which may be a consequence of the high proportion (55%) of surface‐exposed tyrosines. No changes in the circular dichroic spectra of the toxin were found in the presence of the substrate NAD. However, NAD did quench both tyrosine and tryptophan fluorescence emission but did not change the shape of the emission spectrum, or the accessibility of the tryptophans to either the ionic fluorescence quenchers or the neutral quencher acrylamide.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Circular Dichroism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Kinetics</subject><subject>Miscellaneous</subject><subject>NAD - pharmacology</subject><subject>Pertussis Toxin</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Spectrometry, Fluorescence</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>toxins</subject><subject>Virulence Factors, Bordetella - chemistry</subject><issn>0014-2956</issn><issn>1432-1033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkE1LwzAYx4Moc04_glBEvLXmyVsbPcgcmwoDD-o5pGkKHV1Tmxa3b2_Lyq7ic8nh_3te8kPoBnAEfd1vImCUhIApjUBKiNoUBI55tDtB02N0iqYYAwuJ5OIcXXi_wRgLKeIJmhDMMXCYosd54Gtr2sZ54-rCBLrKAuOq3DVb3Rau0mXg2y7bBy4Patu0nfeFD1q3K6pLdJbr0tur8Z2hr9Xyc_Eart9f3hbzdWhYQiAUFnCumQQaU5NwiykhVhNBBXDDbJZwRnkqObE0BZCQMZAJzWMubMYTiOkM3R3m1o377qxv1bbwxpalrqzrvEpwP0lI9ifYS-KMxEkPPhxA0__bNzZXdVNsdbNXgNWgWG3U4FENHtWgWI2K1a5vvh63dOnWZsfW0Wmf34659kaXeaMrU_gjxgUGIWmPPR2wn6K0-38coFbL54-YAf0FKG2Wlw</recordid><startdate>19910615</startdate><enddate>19910615</enddate><creator>SEABROOK, Richard N.</creator><creator>ATKINSON, Tony</creator><creator>IRONS, Laurence I.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19910615</creationdate><title>A spectroscopic and conformational study of pertussis toxin</title><author>SEABROOK, Richard N. ; ATKINSON, Tony ; IRONS, Laurence I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4821-6e10fa491373c85e0322ea263615c4ed85435b952e3b1191d41983f756ed58173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Circular Dichroism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Kinetics</topic><topic>Miscellaneous</topic><topic>NAD - pharmacology</topic><topic>Pertussis Toxin</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Spectrometry, Fluorescence</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>toxins</topic><topic>Virulence Factors, Bordetella - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SEABROOK, Richard N.</creatorcontrib><creatorcontrib>ATKINSON, Tony</creatorcontrib><creatorcontrib>IRONS, Laurence I.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SEABROOK, Richard N.</au><au>ATKINSON, Tony</au><au>IRONS, Laurence I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spectroscopic and conformational study of pertussis toxin</atitle><jtitle>European journal of biochemistry</jtitle><addtitle>Eur J Biochem</addtitle><date>1991-06-15</date><risdate>1991</risdate><volume>198</volume><issue>3</issue><spage>741</spage><epage>747</epage><pages>741-747</pages><issn>0014-2956</issn><eissn>1432-1033</eissn><coden>EJBCAI</coden><abstract>The conformation of native pertussis toxin has been investigated by secondary structure prediction and by circular dichroism, fluorescence and second‐derivative ultraviolet absorption spectroscopy. The far‐ultraviolet circular dichroic spectrum is characteristic of a protein of high β‐sheet and low α‐helix content. This is also shown by an analysis of the circular dichroic spectrum with the Contin programme which indicates that the toxin possesses 53%β‐sheet, 10%α‐helix and 37%β‐turn/loop secondary structure. Second‐derivative ultraviolet absorption spectroscopy suggests that 34 tyrosine residues are solvent‐exposed and quenching of tryptophan fluorescence emission has shown that 4 tryptophan residues are accessible to iodide ions. One of these tryptophans appears to be in close proximity to a positively charged side‐chain, since only 3 tryptophans are accessible to caesium ion fluorescence quenching. When excited at 280 nm, the emission spectrum contains a significant contribution from tyrosine fluorescence, which may be a consequence of the high proportion (55%) of surface‐exposed tyrosines. No changes in the circular dichroic spectra of the toxin were found in the presence of the substrate NAD. However, NAD did quench both tyrosine and tryptophan fluorescence emission but did not change the shape of the emission spectrum, or the accessibility of the tryptophans to either the ionic fluorescence quenchers or the neutral quencher acrylamide.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>2050151</pmid><doi>10.1111/j.1432-1033.1991.tb16075.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-2956
ispartof European journal of biochemistry, 1991-06, Vol.198 (3), p.741-747
issn 0014-2956
1432-1033
language eng
recordid cdi_proquest_miscellaneous_80615694
source MEDLINE; Alma/SFX Local Collection
subjects Analytical, structural and metabolic biochemistry
Biological and medical sciences
Circular Dichroism
Fundamental and applied biological sciences. Psychology
Kinetics
Miscellaneous
NAD - pharmacology
Pertussis Toxin
Protein Conformation
Proteins
Spectrometry, Fluorescence
Spectrophotometry, Ultraviolet
toxins
Virulence Factors, Bordetella - chemistry
title A spectroscopic and conformational study of pertussis toxin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spectroscopic%20and%20conformational%20study%20of%20pertussis%20toxin&rft.jtitle=European%20journal%20of%20biochemistry&rft.au=SEABROOK,%20Richard%20N.&rft.date=1991-06-15&rft.volume=198&rft.issue=3&rft.spage=741&rft.epage=747&rft.pages=741-747&rft.issn=0014-2956&rft.eissn=1432-1033&rft.coden=EJBCAI&rft_id=info:doi/10.1111/j.1432-1033.1991.tb16075.x&rft_dat=%3Cproquest_cross%3E80615694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16054278&rft_id=info:pmid/2050151&rfr_iscdi=true