Investigations on microbial sulfur respiration : isolation, purification, and characterization of cellular components from spirillum 5175

The sulfur-reducing bacterium Spirillum 5175 was investigated with regard to membrane constituents that might be part of the sulfur oxidoreductase which converts elemental sulfur to hydrogen sulfide. Regardless of the electron acceptor used for cultivation of the bacteria, i.e. elemental sulfur, fum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of biochemistry 1991-02, Vol.195 (3), p.849-856
Hauptverfasser: ZOÊPHEL, A, KENNEDY, M. C, BEINERT, H, KRONECK, P. M. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 856
container_issue 3
container_start_page 849
container_title European journal of biochemistry
container_volume 195
creator ZOÊPHEL, A
KENNEDY, M. C
BEINERT, H
KRONECK, P. M. H
description The sulfur-reducing bacterium Spirillum 5175 was investigated with regard to membrane constituents that might be part of the sulfur oxidoreductase which converts elemental sulfur to hydrogen sulfide. Regardless of the electron acceptor used for cultivation of the bacteria, i.e. elemental sulfur, fumarate, or nitrate (Sp. 5175S,F,N), the qualitative pattern of cytochromes and Fe-S proteins did not change significantly, as documented by ultraviolet/visible and electron paramagnetic resonance spectroscopy of oxidized (as isolated) and reduced (dithionite) samples. With elemental sulfur the prominent cytochrome exhibited absorption maxima at 553, 522.5 and 426 nm in the reduced state. In fumarate-grown cells two prominent cytochromes were found with maxima at 561, 551, 530, 521 and 430 nm. Two b-type cytochromes with Em at -198 mV and -20 mV vs the standard hydrogen electrode were identified in the membrane fraction of Sp. 5175F. A yellow pigment was extracted and identified as a flexirubin-type pigment. Although present in large quantities, it seemed not to be involved in the reduction of elemental sulfur. Menaquinone, MK 6 (Mr 580) was the prominent quinone identified in Sp. 5175. Characterization of a second quinone was not attempted because of its much lower concentration. The membrane constituents of Sp. 5175 were solubilized by a variety of detergents and detergent mixtures. A colorimetric procedure with photochemically reduced phenosafranin as the electron donor and cysteamine trisulfide (RS-S-SR, R = -CH2CH2NH2) as the electron acceptor was used to detect sulfur oxidoreductase activity. Three membrane proteins of Sp. 5175 were purified: (1) an [NiFe] hydrogenase, homogeneous by SDS/polyacrylamide gel electrophoresis, with electron paramagnetic resonance signals as isolated at gx,y,z = 2.01, 2.16, 2.33 (100 K), and a strong signal at g = 2.02 below 20 K; (2) a cytochrome b, Fe-S-dependent fumarate reductase, and (3) a protein apparently linked to the sulfur oxidoreductase activity. In contrast to fumarate reductase, no b-type cytochrome was present in the fractions exhibiting sulfur oxidoreductase activity. The presence of Fe-S centers was demonstrated by electron paramagnetic resonance spectroscopy at 10 K. It is not clear whether the c-type cytochrome in the same fractions is part of the sulfur-reducing apparatus of Sp. 5175.
doi_str_mv 10.1111/j.1432-1033.1991.tb15774.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80462872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80462872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-1971d3be4f03311c5c64bc5abdaa94633abed325482ecd0a2d5d987dd24429763</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhS0EKreFR0CyKsGqCR7_xHF3VUVLpUpsYG05tgO-SuLUTqq2b8Bbk_RG7RJvxtb5ZjwzB6FTICUs5-u-BM5oAYSxEpSCcmpASMnLhzdo9yK9RTtCgBdUieo9Os55TwipVCWP0BHUXNaS7tDfm-He5yn8NlOIQ8ZxwH2wKTbBdDjPXTsnnHweQ3oG8DkOOXbP9zM8zim0wW4vMzhs_5hk7ORTeDrwscXWd93cmYRt7Mc4-GHKuE2xx2vVsGg9FiDFB_SuNV32H7d4gn5dfft5-b24_XF9c3lxW1gG9VSAkuBY43m7jAhgha14Y4VpnDGKV4yZxjtGBa-pt44Y6oRTtXSOck6VrNgJ-nKoO6Z4Ny-z6z7ktUcz-DhnXRNe0WU3_wWhAsFBreD5AVz2lnPyrR5T6E161ED0apje69UVvbqiV8P0Zph-WJI_bb_MTe_da-rBoUX_vOkmW9O1yQw25FdMCak44-wf3qOi3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16154192</pqid></control><display><type>article</type><title>Investigations on microbial sulfur respiration : isolation, purification, and characterization of cellular components from spirillum 5175</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>ZOÊPHEL, A ; KENNEDY, M. C ; BEINERT, H ; KRONECK, P. M. H</creator><creatorcontrib>ZOÊPHEL, A ; KENNEDY, M. C ; BEINERT, H ; KRONECK, P. M. H</creatorcontrib><description>The sulfur-reducing bacterium Spirillum 5175 was investigated with regard to membrane constituents that might be part of the sulfur oxidoreductase which converts elemental sulfur to hydrogen sulfide. Regardless of the electron acceptor used for cultivation of the bacteria, i.e. elemental sulfur, fumarate, or nitrate (Sp. 5175S,F,N), the qualitative pattern of cytochromes and Fe-S proteins did not change significantly, as documented by ultraviolet/visible and electron paramagnetic resonance spectroscopy of oxidized (as isolated) and reduced (dithionite) samples. With elemental sulfur the prominent cytochrome exhibited absorption maxima at 553, 522.5 and 426 nm in the reduced state. In fumarate-grown cells two prominent cytochromes were found with maxima at 561, 551, 530, 521 and 430 nm. Two b-type cytochromes with Em at -198 mV and -20 mV vs the standard hydrogen electrode were identified in the membrane fraction of Sp. 5175F. A yellow pigment was extracted and identified as a flexirubin-type pigment. Although present in large quantities, it seemed not to be involved in the reduction of elemental sulfur. Menaquinone, MK 6 (Mr 580) was the prominent quinone identified in Sp. 5175. Characterization of a second quinone was not attempted because of its much lower concentration. The membrane constituents of Sp. 5175 were solubilized by a variety of detergents and detergent mixtures. A colorimetric procedure with photochemically reduced phenosafranin as the electron donor and cysteamine trisulfide (RS-S-SR, R = -CH2CH2NH2) as the electron acceptor was used to detect sulfur oxidoreductase activity. Three membrane proteins of Sp. 5175 were purified: (1) an [NiFe] hydrogenase, homogeneous by SDS/polyacrylamide gel electrophoresis, with electron paramagnetic resonance signals as isolated at gx,y,z = 2.01, 2.16, 2.33 (100 K), and a strong signal at g = 2.02 below 20 K; (2) a cytochrome b, Fe-S-dependent fumarate reductase, and (3) a protein apparently linked to the sulfur oxidoreductase activity. In contrast to fumarate reductase, no b-type cytochrome was present in the fractions exhibiting sulfur oxidoreductase activity. The presence of Fe-S centers was demonstrated by electron paramagnetic resonance spectroscopy at 10 K. It is not clear whether the c-type cytochrome in the same fractions is part of the sulfur-reducing apparatus of Sp. 5175.</description><identifier>ISSN: 0014-2956</identifier><identifier>EISSN: 1432-1033</identifier><identifier>DOI: 10.1111/j.1432-1033.1991.tb15774.x</identifier><identifier>PMID: 1847872</identifier><identifier>CODEN: EJBCAI</identifier><language>eng</language><publisher>Oxford: Blackwell</publisher><subject>Biological and medical sciences ; Cell Membrane - metabolism ; Cell metabolism, cell oxidation ; Cell physiology ; Chromatography, Ion Exchange ; Cytochromes - isolation &amp; purification ; Cytochromes - metabolism ; Cytoplasm - metabolism ; Electron Spin Resonance Spectroscopy ; Electrophoresis, Polyacrylamide Gel ; fumarate reductase ; Fundamental and applied biological sciences. Psychology ; hydrogenase ; membrane proteins ; Metalloproteins - isolation &amp; purification ; Metalloproteins - metabolism ; Molecular and cellular biology ; Oxidation-Reduction ; Pigments, Biological - isolation &amp; purification ; Pigments, Biological - metabolism ; respiration ; Spirillum - growth &amp; development ; Spirillum - metabolism ; Sulfur - metabolism ; sulphur</subject><ispartof>European journal of biochemistry, 1991-02, Vol.195 (3), p.849-856</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-1971d3be4f03311c5c64bc5abdaa94633abed325482ecd0a2d5d987dd24429763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19579434$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1847872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ZOÊPHEL, A</creatorcontrib><creatorcontrib>KENNEDY, M. C</creatorcontrib><creatorcontrib>BEINERT, H</creatorcontrib><creatorcontrib>KRONECK, P. M. H</creatorcontrib><title>Investigations on microbial sulfur respiration : isolation, purification, and characterization of cellular components from spirillum 5175</title><title>European journal of biochemistry</title><addtitle>Eur J Biochem</addtitle><description>The sulfur-reducing bacterium Spirillum 5175 was investigated with regard to membrane constituents that might be part of the sulfur oxidoreductase which converts elemental sulfur to hydrogen sulfide. Regardless of the electron acceptor used for cultivation of the bacteria, i.e. elemental sulfur, fumarate, or nitrate (Sp. 5175S,F,N), the qualitative pattern of cytochromes and Fe-S proteins did not change significantly, as documented by ultraviolet/visible and electron paramagnetic resonance spectroscopy of oxidized (as isolated) and reduced (dithionite) samples. With elemental sulfur the prominent cytochrome exhibited absorption maxima at 553, 522.5 and 426 nm in the reduced state. In fumarate-grown cells two prominent cytochromes were found with maxima at 561, 551, 530, 521 and 430 nm. Two b-type cytochromes with Em at -198 mV and -20 mV vs the standard hydrogen electrode were identified in the membrane fraction of Sp. 5175F. A yellow pigment was extracted and identified as a flexirubin-type pigment. Although present in large quantities, it seemed not to be involved in the reduction of elemental sulfur. Menaquinone, MK 6 (Mr 580) was the prominent quinone identified in Sp. 5175. Characterization of a second quinone was not attempted because of its much lower concentration. The membrane constituents of Sp. 5175 were solubilized by a variety of detergents and detergent mixtures. A colorimetric procedure with photochemically reduced phenosafranin as the electron donor and cysteamine trisulfide (RS-S-SR, R = -CH2CH2NH2) as the electron acceptor was used to detect sulfur oxidoreductase activity. Three membrane proteins of Sp. 5175 were purified: (1) an [NiFe] hydrogenase, homogeneous by SDS/polyacrylamide gel electrophoresis, with electron paramagnetic resonance signals as isolated at gx,y,z = 2.01, 2.16, 2.33 (100 K), and a strong signal at g = 2.02 below 20 K; (2) a cytochrome b, Fe-S-dependent fumarate reductase, and (3) a protein apparently linked to the sulfur oxidoreductase activity. In contrast to fumarate reductase, no b-type cytochrome was present in the fractions exhibiting sulfur oxidoreductase activity. The presence of Fe-S centers was demonstrated by electron paramagnetic resonance spectroscopy at 10 K. It is not clear whether the c-type cytochrome in the same fractions is part of the sulfur-reducing apparatus of Sp. 5175.</description><subject>Biological and medical sciences</subject><subject>Cell Membrane - metabolism</subject><subject>Cell metabolism, cell oxidation</subject><subject>Cell physiology</subject><subject>Chromatography, Ion Exchange</subject><subject>Cytochromes - isolation &amp; purification</subject><subject>Cytochromes - metabolism</subject><subject>Cytoplasm - metabolism</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>fumarate reductase</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>hydrogenase</subject><subject>membrane proteins</subject><subject>Metalloproteins - isolation &amp; purification</subject><subject>Metalloproteins - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Oxidation-Reduction</subject><subject>Pigments, Biological - isolation &amp; purification</subject><subject>Pigments, Biological - metabolism</subject><subject>respiration</subject><subject>Spirillum - growth &amp; development</subject><subject>Spirillum - metabolism</subject><subject>Sulfur - metabolism</subject><subject>sulphur</subject><issn>0014-2956</issn><issn>1432-1033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1TAQhS0EKreFR0CyKsGqCR7_xHF3VUVLpUpsYG05tgO-SuLUTqq2b8Bbk_RG7RJvxtb5ZjwzB6FTICUs5-u-BM5oAYSxEpSCcmpASMnLhzdo9yK9RTtCgBdUieo9Os55TwipVCWP0BHUXNaS7tDfm-He5yn8NlOIQ8ZxwH2wKTbBdDjPXTsnnHweQ3oG8DkOOXbP9zM8zim0wW4vMzhs_5hk7ORTeDrwscXWd93cmYRt7Mc4-GHKuE2xx2vVsGg9FiDFB_SuNV32H7d4gn5dfft5-b24_XF9c3lxW1gG9VSAkuBY43m7jAhgha14Y4VpnDGKV4yZxjtGBa-pt44Y6oRTtXSOck6VrNgJ-nKoO6Z4Ny-z6z7ktUcz-DhnXRNe0WU3_wWhAsFBreD5AVz2lnPyrR5T6E161ED0apje69UVvbqiV8P0Zph-WJI_bb_MTe_da-rBoUX_vOkmW9O1yQw25FdMCak44-wf3qOi3w</recordid><startdate>19910214</startdate><enddate>19910214</enddate><creator>ZOÊPHEL, A</creator><creator>KENNEDY, M. C</creator><creator>BEINERT, H</creator><creator>KRONECK, P. M. H</creator><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19910214</creationdate><title>Investigations on microbial sulfur respiration : isolation, purification, and characterization of cellular components from spirillum 5175</title><author>ZOÊPHEL, A ; KENNEDY, M. C ; BEINERT, H ; KRONECK, P. M. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-1971d3be4f03311c5c64bc5abdaa94633abed325482ecd0a2d5d987dd24429763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Biological and medical sciences</topic><topic>Cell Membrane - metabolism</topic><topic>Cell metabolism, cell oxidation</topic><topic>Cell physiology</topic><topic>Chromatography, Ion Exchange</topic><topic>Cytochromes - isolation &amp; purification</topic><topic>Cytochromes - metabolism</topic><topic>Cytoplasm - metabolism</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>fumarate reductase</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>hydrogenase</topic><topic>membrane proteins</topic><topic>Metalloproteins - isolation &amp; purification</topic><topic>Metalloproteins - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Oxidation-Reduction</topic><topic>Pigments, Biological - isolation &amp; purification</topic><topic>Pigments, Biological - metabolism</topic><topic>respiration</topic><topic>Spirillum - growth &amp; development</topic><topic>Spirillum - metabolism</topic><topic>Sulfur - metabolism</topic><topic>sulphur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZOÊPHEL, A</creatorcontrib><creatorcontrib>KENNEDY, M. C</creatorcontrib><creatorcontrib>BEINERT, H</creatorcontrib><creatorcontrib>KRONECK, P. M. H</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZOÊPHEL, A</au><au>KENNEDY, M. C</au><au>BEINERT, H</au><au>KRONECK, P. M. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigations on microbial sulfur respiration : isolation, purification, and characterization of cellular components from spirillum 5175</atitle><jtitle>European journal of biochemistry</jtitle><addtitle>Eur J Biochem</addtitle><date>1991-02-14</date><risdate>1991</risdate><volume>195</volume><issue>3</issue><spage>849</spage><epage>856</epage><pages>849-856</pages><issn>0014-2956</issn><eissn>1432-1033</eissn><coden>EJBCAI</coden><abstract>The sulfur-reducing bacterium Spirillum 5175 was investigated with regard to membrane constituents that might be part of the sulfur oxidoreductase which converts elemental sulfur to hydrogen sulfide. Regardless of the electron acceptor used for cultivation of the bacteria, i.e. elemental sulfur, fumarate, or nitrate (Sp. 5175S,F,N), the qualitative pattern of cytochromes and Fe-S proteins did not change significantly, as documented by ultraviolet/visible and electron paramagnetic resonance spectroscopy of oxidized (as isolated) and reduced (dithionite) samples. With elemental sulfur the prominent cytochrome exhibited absorption maxima at 553, 522.5 and 426 nm in the reduced state. In fumarate-grown cells two prominent cytochromes were found with maxima at 561, 551, 530, 521 and 430 nm. Two b-type cytochromes with Em at -198 mV and -20 mV vs the standard hydrogen electrode were identified in the membrane fraction of Sp. 5175F. A yellow pigment was extracted and identified as a flexirubin-type pigment. Although present in large quantities, it seemed not to be involved in the reduction of elemental sulfur. Menaquinone, MK 6 (Mr 580) was the prominent quinone identified in Sp. 5175. Characterization of a second quinone was not attempted because of its much lower concentration. The membrane constituents of Sp. 5175 were solubilized by a variety of detergents and detergent mixtures. A colorimetric procedure with photochemically reduced phenosafranin as the electron donor and cysteamine trisulfide (RS-S-SR, R = -CH2CH2NH2) as the electron acceptor was used to detect sulfur oxidoreductase activity. Three membrane proteins of Sp. 5175 were purified: (1) an [NiFe] hydrogenase, homogeneous by SDS/polyacrylamide gel electrophoresis, with electron paramagnetic resonance signals as isolated at gx,y,z = 2.01, 2.16, 2.33 (100 K), and a strong signal at g = 2.02 below 20 K; (2) a cytochrome b, Fe-S-dependent fumarate reductase, and (3) a protein apparently linked to the sulfur oxidoreductase activity. In contrast to fumarate reductase, no b-type cytochrome was present in the fractions exhibiting sulfur oxidoreductase activity. The presence of Fe-S centers was demonstrated by electron paramagnetic resonance spectroscopy at 10 K. It is not clear whether the c-type cytochrome in the same fractions is part of the sulfur-reducing apparatus of Sp. 5175.</abstract><cop>Oxford</cop><pub>Blackwell</pub><pmid>1847872</pmid><doi>10.1111/j.1432-1033.1991.tb15774.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-2956
ispartof European journal of biochemistry, 1991-02, Vol.195 (3), p.849-856
issn 0014-2956
1432-1033
language eng
recordid cdi_proquest_miscellaneous_80462872
source MEDLINE; Alma/SFX Local Collection
subjects Biological and medical sciences
Cell Membrane - metabolism
Cell metabolism, cell oxidation
Cell physiology
Chromatography, Ion Exchange
Cytochromes - isolation & purification
Cytochromes - metabolism
Cytoplasm - metabolism
Electron Spin Resonance Spectroscopy
Electrophoresis, Polyacrylamide Gel
fumarate reductase
Fundamental and applied biological sciences. Psychology
hydrogenase
membrane proteins
Metalloproteins - isolation & purification
Metalloproteins - metabolism
Molecular and cellular biology
Oxidation-Reduction
Pigments, Biological - isolation & purification
Pigments, Biological - metabolism
respiration
Spirillum - growth & development
Spirillum - metabolism
Sulfur - metabolism
sulphur
title Investigations on microbial sulfur respiration : isolation, purification, and characterization of cellular components from spirillum 5175
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigations%20on%20microbial%20sulfur%20respiration%20:%20isolation,%20purification,%20and%20characterization%20of%20cellular%20components%20from%20spirillum%205175&rft.jtitle=European%20journal%20of%20biochemistry&rft.au=ZO%C3%8APHEL,%20A&rft.date=1991-02-14&rft.volume=195&rft.issue=3&rft.spage=849&rft.epage=856&rft.pages=849-856&rft.issn=0014-2956&rft.eissn=1432-1033&rft.coden=EJBCAI&rft_id=info:doi/10.1111/j.1432-1033.1991.tb15774.x&rft_dat=%3Cproquest_cross%3E80462872%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16154192&rft_id=info:pmid/1847872&rfr_iscdi=true