Use of hidden markov models for electrocardiographic signal analysis

Hidden Markov modelling (HMM) is a powerful stochastic modelling technique that has been successfully applied to automatic speech recognition problems. We are currently investigating the application of HMM to electrocardiographic signal analysis with the goal of improving ambulatory ECG analysis. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electrocardiology 1990, Vol.23, p.184-191
Hauptverfasser: Coast, Douglas A., Cano, Gerald G., Briller, Stanley A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue
container_start_page 184
container_title Journal of electrocardiology
container_volume 23
creator Coast, Douglas A.
Cano, Gerald G.
Briller, Stanley A.
description Hidden Markov modelling (HMM) is a powerful stochastic modelling technique that has been successfully applied to automatic speech recognition problems. We are currently investigating the application of HMM to electrocardiographic signal analysis with the goal of improving ambulatory ECG analysis. The HMM approach specifies a Markov chain to model a “hidden” sequence that in this case is the underlying state of the heart. Each state of the Markov chain has an associated output function that describes the statistical characteristics of measurement samples generated during that state. Given a measurement sequence and HMM parameter estimates, the most likely underlying state sequence can be determined and used to infer beat classification. Advantages of this approach include resistance to noise, ability to model lowamplitude waveforms such as the P wave, and availability of an algorithm for automatically estimating model parameters from training data. We have applied the HMM approach to QRS complex detection and to arrhythmia analysis with encouraging results.
doi_str_mv 10.1016/0022-0736(90)90099-N
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80324901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>002207369090099N</els_id><sourcerecordid>80324901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-a9e6f8b5cd63541f42357c81d1516674c9c14f3a2368551d8794995941f38e813</originalsourceid><addsrcrecordid>eNp9kMtOQjEQhhujQUTfQJOzMro4Or2cSzcmBq8JwY2sm9LOgeqBYgskvL1FCEs3M4v5_pnMR8glhTsKtLwHYCyHipc3Em4lgJT58Ih0acFZXgsOx6R7QE7JWYxfkCBWsQ7pMJBQCeiSp1HEzDfZ1FmL82ymw7dfZzNvsY1Z40OGLZpl8EYH6_wk6MXUmSy6yVy3mU5lE108JyeNbiNe7HuPjF6eP_tv-eDj9b3_OMhNurrMtcSyqceFsSUvBG0E40VlamppQcuyEkYaKhquGS_roqC2rqSQspAJ5TXWlPfI9W7vIvifFcalmrlosG31HP0qqho4ExK2oNiBJvgYAzZqEVz6baMoqK08tTWjtmaUBPUnTw1T7Gq_fzWeoT2E9rbS_GE3T3Jw7TCoaBzODVoXkiVlvfv_wC9A1Xyx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80324901</pqid></control><display><type>article</type><title>Use of hidden markov models for electrocardiographic signal analysis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Coast, Douglas A. ; Cano, Gerald G. ; Briller, Stanley A.</creator><creatorcontrib>Coast, Douglas A. ; Cano, Gerald G. ; Briller, Stanley A.</creatorcontrib><description>Hidden Markov modelling (HMM) is a powerful stochastic modelling technique that has been successfully applied to automatic speech recognition problems. We are currently investigating the application of HMM to electrocardiographic signal analysis with the goal of improving ambulatory ECG analysis. The HMM approach specifies a Markov chain to model a “hidden” sequence that in this case is the underlying state of the heart. Each state of the Markov chain has an associated output function that describes the statistical characteristics of measurement samples generated during that state. Given a measurement sequence and HMM parameter estimates, the most likely underlying state sequence can be determined and used to infer beat classification. Advantages of this approach include resistance to noise, ability to model lowamplitude waveforms such as the P wave, and availability of an algorithm for automatically estimating model parameters from training data. We have applied the HMM approach to QRS complex detection and to arrhythmia analysis with encouraging results.</description><identifier>ISSN: 0022-0736</identifier><identifier>EISSN: 1532-8430</identifier><identifier>DOI: 10.1016/0022-0736(90)90099-N</identifier><identifier>PMID: 2090740</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Arrhythmias, Cardiac - diagnosis ; Computer Simulation ; Electrocardiography - methods ; Electrocardiography, Ambulatory - methods ; Humans ; Markov Chains ; Signal Processing, Computer-Assisted</subject><ispartof>Journal of electrocardiology, 1990, Vol.23, p.184-191</ispartof><rights>1991 Churchill Livingstone Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-a9e6f8b5cd63541f42357c81d1516674c9c14f3a2368551d8794995941f38e813</citedby><cites>FETCH-LOGICAL-c272t-a9e6f8b5cd63541f42357c81d1516674c9c14f3a2368551d8794995941f38e813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0022-0736(90)90099-N$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,4010,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2090740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coast, Douglas A.</creatorcontrib><creatorcontrib>Cano, Gerald G.</creatorcontrib><creatorcontrib>Briller, Stanley A.</creatorcontrib><title>Use of hidden markov models for electrocardiographic signal analysis</title><title>Journal of electrocardiology</title><addtitle>J Electrocardiol</addtitle><description>Hidden Markov modelling (HMM) is a powerful stochastic modelling technique that has been successfully applied to automatic speech recognition problems. We are currently investigating the application of HMM to electrocardiographic signal analysis with the goal of improving ambulatory ECG analysis. The HMM approach specifies a Markov chain to model a “hidden” sequence that in this case is the underlying state of the heart. Each state of the Markov chain has an associated output function that describes the statistical characteristics of measurement samples generated during that state. Given a measurement sequence and HMM parameter estimates, the most likely underlying state sequence can be determined and used to infer beat classification. Advantages of this approach include resistance to noise, ability to model lowamplitude waveforms such as the P wave, and availability of an algorithm for automatically estimating model parameters from training data. We have applied the HMM approach to QRS complex detection and to arrhythmia analysis with encouraging results.</description><subject>Algorithms</subject><subject>Arrhythmias, Cardiac - diagnosis</subject><subject>Computer Simulation</subject><subject>Electrocardiography - methods</subject><subject>Electrocardiography, Ambulatory - methods</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Signal Processing, Computer-Assisted</subject><issn>0022-0736</issn><issn>1532-8430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOQjEQhhujQUTfQJOzMro4Or2cSzcmBq8JwY2sm9LOgeqBYgskvL1FCEs3M4v5_pnMR8glhTsKtLwHYCyHipc3Em4lgJT58Ih0acFZXgsOx6R7QE7JWYxfkCBWsQ7pMJBQCeiSp1HEzDfZ1FmL82ymw7dfZzNvsY1Z40OGLZpl8EYH6_wk6MXUmSy6yVy3mU5lE108JyeNbiNe7HuPjF6eP_tv-eDj9b3_OMhNurrMtcSyqceFsSUvBG0E40VlamppQcuyEkYaKhquGS_roqC2rqSQspAJ5TXWlPfI9W7vIvifFcalmrlosG31HP0qqho4ExK2oNiBJvgYAzZqEVz6baMoqK08tTWjtmaUBPUnTw1T7Gq_fzWeoT2E9rbS_GE3T3Jw7TCoaBzODVoXkiVlvfv_wC9A1Xyx</recordid><startdate>1990</startdate><enddate>1990</enddate><creator>Coast, Douglas A.</creator><creator>Cano, Gerald G.</creator><creator>Briller, Stanley A.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>1990</creationdate><title>Use of hidden markov models for electrocardiographic signal analysis</title><author>Coast, Douglas A. ; Cano, Gerald G. ; Briller, Stanley A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-a9e6f8b5cd63541f42357c81d1516674c9c14f3a2368551d8794995941f38e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Algorithms</topic><topic>Arrhythmias, Cardiac - diagnosis</topic><topic>Computer Simulation</topic><topic>Electrocardiography - methods</topic><topic>Electrocardiography, Ambulatory - methods</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coast, Douglas A.</creatorcontrib><creatorcontrib>Cano, Gerald G.</creatorcontrib><creatorcontrib>Briller, Stanley A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of electrocardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coast, Douglas A.</au><au>Cano, Gerald G.</au><au>Briller, Stanley A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of hidden markov models for electrocardiographic signal analysis</atitle><jtitle>Journal of electrocardiology</jtitle><addtitle>J Electrocardiol</addtitle><date>1990</date><risdate>1990</risdate><volume>23</volume><spage>184</spage><epage>191</epage><pages>184-191</pages><issn>0022-0736</issn><eissn>1532-8430</eissn><abstract>Hidden Markov modelling (HMM) is a powerful stochastic modelling technique that has been successfully applied to automatic speech recognition problems. We are currently investigating the application of HMM to electrocardiographic signal analysis with the goal of improving ambulatory ECG analysis. The HMM approach specifies a Markov chain to model a “hidden” sequence that in this case is the underlying state of the heart. Each state of the Markov chain has an associated output function that describes the statistical characteristics of measurement samples generated during that state. Given a measurement sequence and HMM parameter estimates, the most likely underlying state sequence can be determined and used to infer beat classification. Advantages of this approach include resistance to noise, ability to model lowamplitude waveforms such as the P wave, and availability of an algorithm for automatically estimating model parameters from training data. We have applied the HMM approach to QRS complex detection and to arrhythmia analysis with encouraging results.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>2090740</pmid><doi>10.1016/0022-0736(90)90099-N</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0736
ispartof Journal of electrocardiology, 1990, Vol.23, p.184-191
issn 0022-0736
1532-8430
language eng
recordid cdi_proquest_miscellaneous_80324901
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Arrhythmias, Cardiac - diagnosis
Computer Simulation
Electrocardiography - methods
Electrocardiography, Ambulatory - methods
Humans
Markov Chains
Signal Processing, Computer-Assisted
title Use of hidden markov models for electrocardiographic signal analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20hidden%20markov%20models%20for%20electrocardiographic%20signal%20analysis&rft.jtitle=Journal%20of%20electrocardiology&rft.au=Coast,%20Douglas%20A.&rft.date=1990&rft.volume=23&rft.spage=184&rft.epage=191&rft.pages=184-191&rft.issn=0022-0736&rft.eissn=1532-8430&rft_id=info:doi/10.1016/0022-0736(90)90099-N&rft_dat=%3Cproquest_cross%3E80324901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80324901&rft_id=info:pmid/2090740&rft_els_id=002207369090099N&rfr_iscdi=true