Slowing of the discharge of secondary endings of cat muscle spindles during fusimotor stimulation

Responses of secondary endings of muscle spindles of the peroneus tertius muscle of the anaesthetized cat have been recorded during repetitive stimulation of functionally single fusimotor fibres that produced slowing of the discharge. In a sample of 125 pairs of single fusimotor fibres and secondary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental brain research 1990-01, Vol.83 (1), p.164-171
Hauptverfasser: GIOUX, M, PETIT, J, PROSKE, U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Responses of secondary endings of muscle spindles of the peroneus tertius muscle of the anaesthetized cat have been recorded during repetitive stimulation of functionally single fusimotor fibres that produced slowing of the discharge. In a sample of 125 pairs of single fusimotor fibres and secondary spindle afferents 5 examples of slowing were seen. The amount of slowing became less at longer muscle lengths. Conditioning the spindle by stimulating the muscle nerve at fusimotor strength, at a length 2.5 mm longer than the test length, and then returning to the test length 3 seconds later led to a greater degree of slowing of the discharge than after conditioning stimulation at the test length. With one exception, responses to muscle stretch were reduced during stimulation of a fusimotor fibre that produced slowing. On two occasions stimulating a fusimotor fibre that produced slowing of the response of one secondary ending, led to excitation of two other endings. Two possible explanations for the generation of slowing responses have been considered. The first is that the slowing is the result of contraction of the region of intrafusal fibre directly underlying the secondary sensory ending. The second, which we favour since it accounts for the facts more adequately, is that slowing is the result of shortening of the region of nuclear chain fibres on which the sensory ending lies, produced by movement in an adjacent nuclear bag fibre.
ISSN:0014-4819
1432-1106
DOI:10.1007/BF00232205