Optimal chemostat cascades for periplasmic protein production
This theoretical work predicts the optimal system design for the steady‐state production of secreted protein in a chemostat cascade, using bakers' yeast (Saccharomyces cerevisiae) as the host organism. The protein of interest, mutant invertase, is secreted to the periplasmic space instead of th...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 1990-11, Vol.6 (6), p.430-436 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 436 |
---|---|
container_issue | 6 |
container_start_page | 430 |
container_title | Biotechnology progress |
container_volume | 6 |
creator | Davis, R.H. (University of Colorado, Boulder, CO) Ramirez, W.F Chatterjee, A |
description | This theoretical work predicts the optimal system design for the steady‐state production of secreted protein in a chemostat cascade, using bakers' yeast (Saccharomyces cerevisiae) as the host organism. The protein of interest, mutant invertase, is secreted to the periplasmic space instead of the culture medium on account of its large size. This work uses the secretion model developed and tested by Park and Ramirez (1988). It is shown that the highest productivity is achieved when the chemostat cascade contains two stages, although the improvement over the single‐stage productivity is small. When no recycle is used, the advantage of two stages results from the tradeoff between maximizing the cell concentration and maximizing the rate of protein production per cell. When recycle is used, the cell concentration and protein productivity are increased, and the advantage of two stages results from the tradeoff between maximizing the specific protein production rate and maximizing the specific protein secretion rate. Cascades with three stages were also investigated, but these were found to have no improvement over the corresponding two‐stage cascades. |
doi_str_mv | 10.1021/bp00006a005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80265080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16608508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4865-eb9e70ea22001382c7a9a06c10efde5c44cce30ee3185829de30ab0837ae3f523</originalsourceid><addsrcrecordid>eNqFkEFv1DAQha0KVJbSEzckpFzgggJjO3acQw-wghaptFW7LdysWWcCpskm2FlB_z2OsqKcwD6MRvPNvJnH2FMOrzkI_mY9QHoaAdQeW3AlINcg5QO2MKXSeVlJ84g9jvF7ogxosc_2udTaSLlgR-fD6DtsM_eNuj6OOGYOo8OaYtb0IRso-KHF2HmXDaEfyW-mWG_d6PvNE_awwTbS4S4esOsP71fLk_z0_Pjj8u1p7gqjVU7rikogFAKASyNciRWCdhyoqUm5onCOJBBJbpQRVZ0SXIORJZJslJAH7OU8N0n_2FIcbeejo7bFDfXbaA0IrdJt_wW51mASmcBXM-hCH2Ogxg4h-RDuLAc7uWr_cjXRz3djt-uO6nt2tjHVX-zqk3dtE3DjfLzHqkLqwkyq5cz99C3d_UvSvltdXKoiGabTnzbI504fR_r1pxPDrdWlLJX9fHZsz27M8tOqOrFfEv9s5hvsLX4NaZvrqyqdL2QlfwND9aZS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16608508</pqid></control><display><type>article</type><title>Optimal chemostat cascades for periplasmic protein production</title><source>MEDLINE</source><source>ACS Publications</source><creator>Davis, R.H. (University of Colorado, Boulder, CO) ; Ramirez, W.F ; Chatterjee, A</creator><creatorcontrib>Davis, R.H. (University of Colorado, Boulder, CO) ; Ramirez, W.F ; Chatterjee, A</creatorcontrib><description>This theoretical work predicts the optimal system design for the steady‐state production of secreted protein in a chemostat cascade, using bakers' yeast (Saccharomyces cerevisiae) as the host organism. The protein of interest, mutant invertase, is secreted to the periplasmic space instead of the culture medium on account of its large size. This work uses the secretion model developed and tested by Park and Ramirez (1988). It is shown that the highest productivity is achieved when the chemostat cascade contains two stages, although the improvement over the single‐stage productivity is small. When no recycle is used, the advantage of two stages results from the tradeoff between maximizing the cell concentration and maximizing the rate of protein production per cell. When recycle is used, the cell concentration and protein productivity are increased, and the advantage of two stages results from the tradeoff between maximizing the specific protein production rate and maximizing the specific protein secretion rate. Cascades with three stages were also investigated, but these were found to have no improvement over the corresponding two‐stage cascades.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1021/bp00006a005</identifier><identifier>PMID: 1366833</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>USA: American Chemical Society</publisher><subject>BETA-FRUCTOFURANOSIDASE ; Biological and medical sciences ; BIOREACTEUR ; BIOREACTORS ; BIORREACTORES ; BIOTECHNOLOGIE ; BIOTECHNOLOGY ; BIOTECNOLOGIA ; CELL CULTURE ; CELL STRUCTURE ; CELL ULTRASTRUCTURE ; Cloning, Molecular ; continuous culture ; CULTIVO DE CELULAS ; CULTURE DE CELLULE ; ESTRUCTURA CELULAR ; FRUCTOFURANOSIDASA ; FRUCTOFURANOSIDASE ; Fundamental and applied biological sciences. Psychology ; Genetic Engineering ; Glycoside Hydrolases - biosynthesis ; Glycoside Hydrolases - genetics ; Glycoside Hydrolases - secretion ; Kinetics ; MATHEMATICAL MODELS ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; MODELE MATHEMATIQUE ; MODELOS MATEMATICOS ; MUTANT ; MUTANTES ; MUTANTS ; Mutation ; periplasmic space ; PROTEIN SYNTHESIS ; PROTEINAS ; PROTEINE ; PROTEINS ; Recombinant Proteins - biosynthesis ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - growth & development ; SECRECION ; SECRETION ; secretion models ; SINTESIS DE PROTEINAS ; STRUCTURE CELLULAIRE ; SYNTHESE PROTEIQUE</subject><ispartof>Biotechnology progress, 1990-11, Vol.6 (6), p.430-436</ispartof><rights>Copyright © 1990 American Institute of Chemical Engineers (AIChE)</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4865-eb9e70ea22001382c7a9a06c10efde5c44cce30ee3185829de30ab0837ae3f523</citedby><cites>FETCH-LOGICAL-c4865-eb9e70ea22001382c7a9a06c10efde5c44cce30ee3185829de30ab0837ae3f523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2766,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19436488$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1366833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davis, R.H. (University of Colorado, Boulder, CO)</creatorcontrib><creatorcontrib>Ramirez, W.F</creatorcontrib><creatorcontrib>Chatterjee, A</creatorcontrib><title>Optimal chemostat cascades for periplasmic protein production</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>This theoretical work predicts the optimal system design for the steady‐state production of secreted protein in a chemostat cascade, using bakers' yeast (Saccharomyces cerevisiae) as the host organism. The protein of interest, mutant invertase, is secreted to the periplasmic space instead of the culture medium on account of its large size. This work uses the secretion model developed and tested by Park and Ramirez (1988). It is shown that the highest productivity is achieved when the chemostat cascade contains two stages, although the improvement over the single‐stage productivity is small. When no recycle is used, the advantage of two stages results from the tradeoff between maximizing the cell concentration and maximizing the rate of protein production per cell. When recycle is used, the cell concentration and protein productivity are increased, and the advantage of two stages results from the tradeoff between maximizing the specific protein production rate and maximizing the specific protein secretion rate. Cascades with three stages were also investigated, but these were found to have no improvement over the corresponding two‐stage cascades.</description><subject>BETA-FRUCTOFURANOSIDASE</subject><subject>Biological and medical sciences</subject><subject>BIOREACTEUR</subject><subject>BIOREACTORS</subject><subject>BIORREACTORES</subject><subject>BIOTECHNOLOGIE</subject><subject>BIOTECHNOLOGY</subject><subject>BIOTECNOLOGIA</subject><subject>CELL CULTURE</subject><subject>CELL STRUCTURE</subject><subject>CELL ULTRASTRUCTURE</subject><subject>Cloning, Molecular</subject><subject>continuous culture</subject><subject>CULTIVO DE CELULAS</subject><subject>CULTURE DE CELLULE</subject><subject>ESTRUCTURA CELULAR</subject><subject>FRUCTOFURANOSIDASA</subject><subject>FRUCTOFURANOSIDASE</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic Engineering</subject><subject>Glycoside Hydrolases - biosynthesis</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycoside Hydrolases - secretion</subject><subject>Kinetics</subject><subject>MATHEMATICAL MODELS</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>MODELE MATHEMATIQUE</subject><subject>MODELOS MATEMATICOS</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>periplasmic space</subject><subject>PROTEIN SYNTHESIS</subject><subject>PROTEINAS</subject><subject>PROTEINE</subject><subject>PROTEINS</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>SECRECION</subject><subject>SECRETION</subject><subject>secretion models</subject><subject>SINTESIS DE PROTEINAS</subject><subject>STRUCTURE CELLULAIRE</subject><subject>SYNTHESE PROTEIQUE</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFv1DAQha0KVJbSEzckpFzgggJjO3acQw-wghaptFW7LdysWWcCpskm2FlB_z2OsqKcwD6MRvPNvJnH2FMOrzkI_mY9QHoaAdQeW3AlINcg5QO2MKXSeVlJ84g9jvF7ogxosc_2udTaSLlgR-fD6DtsM_eNuj6OOGYOo8OaYtb0IRso-KHF2HmXDaEfyW-mWG_d6PvNE_awwTbS4S4esOsP71fLk_z0_Pjj8u1p7gqjVU7rikogFAKASyNciRWCdhyoqUm5onCOJBBJbpQRVZ0SXIORJZJslJAH7OU8N0n_2FIcbeejo7bFDfXbaA0IrdJt_wW51mASmcBXM-hCH2Ogxg4h-RDuLAc7uWr_cjXRz3djt-uO6nt2tjHVX-zqk3dtE3DjfLzHqkLqwkyq5cz99C3d_UvSvltdXKoiGabTnzbI504fR_r1pxPDrdWlLJX9fHZsz27M8tOqOrFfEv9s5hvsLX4NaZvrqyqdL2QlfwND9aZS</recordid><startdate>199011</startdate><enddate>199011</enddate><creator>Davis, R.H. (University of Colorado, Boulder, CO)</creator><creator>Ramirez, W.F</creator><creator>Chatterjee, A</creator><general>American Chemical Society</general><general>American Institute of Chemical Engineers</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>199011</creationdate><title>Optimal chemostat cascades for periplasmic protein production</title><author>Davis, R.H. (University of Colorado, Boulder, CO) ; Ramirez, W.F ; Chatterjee, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4865-eb9e70ea22001382c7a9a06c10efde5c44cce30ee3185829de30ab0837ae3f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>BETA-FRUCTOFURANOSIDASE</topic><topic>Biological and medical sciences</topic><topic>BIOREACTEUR</topic><topic>BIOREACTORS</topic><topic>BIORREACTORES</topic><topic>BIOTECHNOLOGIE</topic><topic>BIOTECHNOLOGY</topic><topic>BIOTECNOLOGIA</topic><topic>CELL CULTURE</topic><topic>CELL STRUCTURE</topic><topic>CELL ULTRASTRUCTURE</topic><topic>Cloning, Molecular</topic><topic>continuous culture</topic><topic>CULTIVO DE CELULAS</topic><topic>CULTURE DE CELLULE</topic><topic>ESTRUCTURA CELULAR</topic><topic>FRUCTOFURANOSIDASA</topic><topic>FRUCTOFURANOSIDASE</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic Engineering</topic><topic>Glycoside Hydrolases - biosynthesis</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycoside Hydrolases - secretion</topic><topic>Kinetics</topic><topic>MATHEMATICAL MODELS</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>MODELE MATHEMATIQUE</topic><topic>MODELOS MATEMATICOS</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>periplasmic space</topic><topic>PROTEIN SYNTHESIS</topic><topic>PROTEINAS</topic><topic>PROTEINE</topic><topic>PROTEINS</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>SECRECION</topic><topic>SECRETION</topic><topic>secretion models</topic><topic>SINTESIS DE PROTEINAS</topic><topic>STRUCTURE CELLULAIRE</topic><topic>SYNTHESE PROTEIQUE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, R.H. (University of Colorado, Boulder, CO)</creatorcontrib><creatorcontrib>Ramirez, W.F</creatorcontrib><creatorcontrib>Chatterjee, A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, R.H. (University of Colorado, Boulder, CO)</au><au>Ramirez, W.F</au><au>Chatterjee, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal chemostat cascades for periplasmic protein production</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>1990-11</date><risdate>1990</risdate><volume>6</volume><issue>6</issue><spage>430</spage><epage>436</epage><pages>430-436</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>This theoretical work predicts the optimal system design for the steady‐state production of secreted protein in a chemostat cascade, using bakers' yeast (Saccharomyces cerevisiae) as the host organism. The protein of interest, mutant invertase, is secreted to the periplasmic space instead of the culture medium on account of its large size. This work uses the secretion model developed and tested by Park and Ramirez (1988). It is shown that the highest productivity is achieved when the chemostat cascade contains two stages, although the improvement over the single‐stage productivity is small. When no recycle is used, the advantage of two stages results from the tradeoff between maximizing the cell concentration and maximizing the rate of protein production per cell. When recycle is used, the cell concentration and protein productivity are increased, and the advantage of two stages results from the tradeoff between maximizing the specific protein production rate and maximizing the specific protein secretion rate. Cascades with three stages were also investigated, but these were found to have no improvement over the corresponding two‐stage cascades.</abstract><cop>USA</cop><pub>American Chemical Society</pub><pmid>1366833</pmid><doi>10.1021/bp00006a005</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 1990-11, Vol.6 (6), p.430-436 |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_80265080 |
source | MEDLINE; ACS Publications |
subjects | BETA-FRUCTOFURANOSIDASE Biological and medical sciences BIOREACTEUR BIOREACTORS BIORREACTORES BIOTECHNOLOGIE BIOTECHNOLOGY BIOTECNOLOGIA CELL CULTURE CELL STRUCTURE CELL ULTRASTRUCTURE Cloning, Molecular continuous culture CULTIVO DE CELULAS CULTURE DE CELLULE ESTRUCTURA CELULAR FRUCTOFURANOSIDASA FRUCTOFURANOSIDASE Fundamental and applied biological sciences. Psychology Genetic Engineering Glycoside Hydrolases - biosynthesis Glycoside Hydrolases - genetics Glycoside Hydrolases - secretion Kinetics MATHEMATICAL MODELS Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology MODELE MATHEMATIQUE MODELOS MATEMATICOS MUTANT MUTANTES MUTANTS Mutation periplasmic space PROTEIN SYNTHESIS PROTEINAS PROTEINE PROTEINS Recombinant Proteins - biosynthesis SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - growth & development SECRECION SECRETION secretion models SINTESIS DE PROTEINAS STRUCTURE CELLULAIRE SYNTHESE PROTEIQUE |
title | Optimal chemostat cascades for periplasmic protein production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20chemostat%20cascades%20for%20periplasmic%20protein%20production&rft.jtitle=Biotechnology%20progress&rft.au=Davis,%20R.H.%20(University%20of%20Colorado,%20Boulder,%20CO)&rft.date=1990-11&rft.volume=6&rft.issue=6&rft.spage=430&rft.epage=436&rft.pages=430-436&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1021/bp00006a005&rft_dat=%3Cproquest_cross%3E16608508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16608508&rft_id=info:pmid/1366833&rfr_iscdi=true |