Optimal chemostat cascades for periplasmic protein production

This theoretical work predicts the optimal system design for the steady‐state production of secreted protein in a chemostat cascade, using bakers' yeast (Saccharomyces cerevisiae) as the host organism. The protein of interest, mutant invertase, is secreted to the periplasmic space instead of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 1990-11, Vol.6 (6), p.430-436
Hauptverfasser: Davis, R.H. (University of Colorado, Boulder, CO), Ramirez, W.F, Chatterjee, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue 6
container_start_page 430
container_title Biotechnology progress
container_volume 6
creator Davis, R.H. (University of Colorado, Boulder, CO)
Ramirez, W.F
Chatterjee, A
description This theoretical work predicts the optimal system design for the steady‐state production of secreted protein in a chemostat cascade, using bakers' yeast (Saccharomyces cerevisiae) as the host organism. The protein of interest, mutant invertase, is secreted to the periplasmic space instead of the culture medium on account of its large size. This work uses the secretion model developed and tested by Park and Ramirez (1988). It is shown that the highest productivity is achieved when the chemostat cascade contains two stages, although the improvement over the single‐stage productivity is small. When no recycle is used, the advantage of two stages results from the tradeoff between maximizing the cell concentration and maximizing the rate of protein production per cell. When recycle is used, the cell concentration and protein productivity are increased, and the advantage of two stages results from the tradeoff between maximizing the specific protein production rate and maximizing the specific protein secretion rate. Cascades with three stages were also investigated, but these were found to have no improvement over the corresponding two‐stage cascades.
doi_str_mv 10.1021/bp00006a005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80265080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16608508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4865-eb9e70ea22001382c7a9a06c10efde5c44cce30ee3185829de30ab0837ae3f523</originalsourceid><addsrcrecordid>eNqFkEFv1DAQha0KVJbSEzckpFzgggJjO3acQw-wghaptFW7LdysWWcCpskm2FlB_z2OsqKcwD6MRvPNvJnH2FMOrzkI_mY9QHoaAdQeW3AlINcg5QO2MKXSeVlJ84g9jvF7ogxosc_2udTaSLlgR-fD6DtsM_eNuj6OOGYOo8OaYtb0IRso-KHF2HmXDaEfyW-mWG_d6PvNE_awwTbS4S4esOsP71fLk_z0_Pjj8u1p7gqjVU7rikogFAKASyNciRWCdhyoqUm5onCOJBBJbpQRVZ0SXIORJZJslJAH7OU8N0n_2FIcbeejo7bFDfXbaA0IrdJt_wW51mASmcBXM-hCH2Ogxg4h-RDuLAc7uWr_cjXRz3djt-uO6nt2tjHVX-zqk3dtE3DjfLzHqkLqwkyq5cz99C3d_UvSvltdXKoiGabTnzbI504fR_r1pxPDrdWlLJX9fHZsz27M8tOqOrFfEv9s5hvsLX4NaZvrqyqdL2QlfwND9aZS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16608508</pqid></control><display><type>article</type><title>Optimal chemostat cascades for periplasmic protein production</title><source>MEDLINE</source><source>ACS Publications</source><creator>Davis, R.H. (University of Colorado, Boulder, CO) ; Ramirez, W.F ; Chatterjee, A</creator><creatorcontrib>Davis, R.H. (University of Colorado, Boulder, CO) ; Ramirez, W.F ; Chatterjee, A</creatorcontrib><description>This theoretical work predicts the optimal system design for the steady‐state production of secreted protein in a chemostat cascade, using bakers' yeast (Saccharomyces cerevisiae) as the host organism. The protein of interest, mutant invertase, is secreted to the periplasmic space instead of the culture medium on account of its large size. This work uses the secretion model developed and tested by Park and Ramirez (1988). It is shown that the highest productivity is achieved when the chemostat cascade contains two stages, although the improvement over the single‐stage productivity is small. When no recycle is used, the advantage of two stages results from the tradeoff between maximizing the cell concentration and maximizing the rate of protein production per cell. When recycle is used, the cell concentration and protein productivity are increased, and the advantage of two stages results from the tradeoff between maximizing the specific protein production rate and maximizing the specific protein secretion rate. Cascades with three stages were also investigated, but these were found to have no improvement over the corresponding two‐stage cascades.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1021/bp00006a005</identifier><identifier>PMID: 1366833</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>USA: American Chemical Society</publisher><subject>BETA-FRUCTOFURANOSIDASE ; Biological and medical sciences ; BIOREACTEUR ; BIOREACTORS ; BIORREACTORES ; BIOTECHNOLOGIE ; BIOTECHNOLOGY ; BIOTECNOLOGIA ; CELL CULTURE ; CELL STRUCTURE ; CELL ULTRASTRUCTURE ; Cloning, Molecular ; continuous culture ; CULTIVO DE CELULAS ; CULTURE DE CELLULE ; ESTRUCTURA CELULAR ; FRUCTOFURANOSIDASA ; FRUCTOFURANOSIDASE ; Fundamental and applied biological sciences. Psychology ; Genetic Engineering ; Glycoside Hydrolases - biosynthesis ; Glycoside Hydrolases - genetics ; Glycoside Hydrolases - secretion ; Kinetics ; MATHEMATICAL MODELS ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; MODELE MATHEMATIQUE ; MODELOS MATEMATICOS ; MUTANT ; MUTANTES ; MUTANTS ; Mutation ; periplasmic space ; PROTEIN SYNTHESIS ; PROTEINAS ; PROTEINE ; PROTEINS ; Recombinant Proteins - biosynthesis ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - growth &amp; development ; SECRECION ; SECRETION ; secretion models ; SINTESIS DE PROTEINAS ; STRUCTURE CELLULAIRE ; SYNTHESE PROTEIQUE</subject><ispartof>Biotechnology progress, 1990-11, Vol.6 (6), p.430-436</ispartof><rights>Copyright © 1990 American Institute of Chemical Engineers (AIChE)</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4865-eb9e70ea22001382c7a9a06c10efde5c44cce30ee3185829de30ab0837ae3f523</citedby><cites>FETCH-LOGICAL-c4865-eb9e70ea22001382c7a9a06c10efde5c44cce30ee3185829de30ab0837ae3f523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2766,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19436488$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1366833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davis, R.H. (University of Colorado, Boulder, CO)</creatorcontrib><creatorcontrib>Ramirez, W.F</creatorcontrib><creatorcontrib>Chatterjee, A</creatorcontrib><title>Optimal chemostat cascades for periplasmic protein production</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>This theoretical work predicts the optimal system design for the steady‐state production of secreted protein in a chemostat cascade, using bakers' yeast (Saccharomyces cerevisiae) as the host organism. The protein of interest, mutant invertase, is secreted to the periplasmic space instead of the culture medium on account of its large size. This work uses the secretion model developed and tested by Park and Ramirez (1988). It is shown that the highest productivity is achieved when the chemostat cascade contains two stages, although the improvement over the single‐stage productivity is small. When no recycle is used, the advantage of two stages results from the tradeoff between maximizing the cell concentration and maximizing the rate of protein production per cell. When recycle is used, the cell concentration and protein productivity are increased, and the advantage of two stages results from the tradeoff between maximizing the specific protein production rate and maximizing the specific protein secretion rate. Cascades with three stages were also investigated, but these were found to have no improvement over the corresponding two‐stage cascades.</description><subject>BETA-FRUCTOFURANOSIDASE</subject><subject>Biological and medical sciences</subject><subject>BIOREACTEUR</subject><subject>BIOREACTORS</subject><subject>BIORREACTORES</subject><subject>BIOTECHNOLOGIE</subject><subject>BIOTECHNOLOGY</subject><subject>BIOTECNOLOGIA</subject><subject>CELL CULTURE</subject><subject>CELL STRUCTURE</subject><subject>CELL ULTRASTRUCTURE</subject><subject>Cloning, Molecular</subject><subject>continuous culture</subject><subject>CULTIVO DE CELULAS</subject><subject>CULTURE DE CELLULE</subject><subject>ESTRUCTURA CELULAR</subject><subject>FRUCTOFURANOSIDASA</subject><subject>FRUCTOFURANOSIDASE</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic Engineering</subject><subject>Glycoside Hydrolases - biosynthesis</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycoside Hydrolases - secretion</subject><subject>Kinetics</subject><subject>MATHEMATICAL MODELS</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>MODELE MATHEMATIQUE</subject><subject>MODELOS MATEMATICOS</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>periplasmic space</subject><subject>PROTEIN SYNTHESIS</subject><subject>PROTEINAS</subject><subject>PROTEINE</subject><subject>PROTEINS</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>SECRECION</subject><subject>SECRETION</subject><subject>secretion models</subject><subject>SINTESIS DE PROTEINAS</subject><subject>STRUCTURE CELLULAIRE</subject><subject>SYNTHESE PROTEIQUE</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFv1DAQha0KVJbSEzckpFzgggJjO3acQw-wghaptFW7LdysWWcCpskm2FlB_z2OsqKcwD6MRvPNvJnH2FMOrzkI_mY9QHoaAdQeW3AlINcg5QO2MKXSeVlJ84g9jvF7ogxosc_2udTaSLlgR-fD6DtsM_eNuj6OOGYOo8OaYtb0IRso-KHF2HmXDaEfyW-mWG_d6PvNE_awwTbS4S4esOsP71fLk_z0_Pjj8u1p7gqjVU7rikogFAKASyNciRWCdhyoqUm5onCOJBBJbpQRVZ0SXIORJZJslJAH7OU8N0n_2FIcbeejo7bFDfXbaA0IrdJt_wW51mASmcBXM-hCH2Ogxg4h-RDuLAc7uWr_cjXRz3djt-uO6nt2tjHVX-zqk3dtE3DjfLzHqkLqwkyq5cz99C3d_UvSvltdXKoiGabTnzbI504fR_r1pxPDrdWlLJX9fHZsz27M8tOqOrFfEv9s5hvsLX4NaZvrqyqdL2QlfwND9aZS</recordid><startdate>199011</startdate><enddate>199011</enddate><creator>Davis, R.H. (University of Colorado, Boulder, CO)</creator><creator>Ramirez, W.F</creator><creator>Chatterjee, A</creator><general>American Chemical Society</general><general>American Institute of Chemical Engineers</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>199011</creationdate><title>Optimal chemostat cascades for periplasmic protein production</title><author>Davis, R.H. (University of Colorado, Boulder, CO) ; Ramirez, W.F ; Chatterjee, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4865-eb9e70ea22001382c7a9a06c10efde5c44cce30ee3185829de30ab0837ae3f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>BETA-FRUCTOFURANOSIDASE</topic><topic>Biological and medical sciences</topic><topic>BIOREACTEUR</topic><topic>BIOREACTORS</topic><topic>BIORREACTORES</topic><topic>BIOTECHNOLOGIE</topic><topic>BIOTECHNOLOGY</topic><topic>BIOTECNOLOGIA</topic><topic>CELL CULTURE</topic><topic>CELL STRUCTURE</topic><topic>CELL ULTRASTRUCTURE</topic><topic>Cloning, Molecular</topic><topic>continuous culture</topic><topic>CULTIVO DE CELULAS</topic><topic>CULTURE DE CELLULE</topic><topic>ESTRUCTURA CELULAR</topic><topic>FRUCTOFURANOSIDASA</topic><topic>FRUCTOFURANOSIDASE</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic Engineering</topic><topic>Glycoside Hydrolases - biosynthesis</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycoside Hydrolases - secretion</topic><topic>Kinetics</topic><topic>MATHEMATICAL MODELS</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>MODELE MATHEMATIQUE</topic><topic>MODELOS MATEMATICOS</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>periplasmic space</topic><topic>PROTEIN SYNTHESIS</topic><topic>PROTEINAS</topic><topic>PROTEINE</topic><topic>PROTEINS</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>SECRECION</topic><topic>SECRETION</topic><topic>secretion models</topic><topic>SINTESIS DE PROTEINAS</topic><topic>STRUCTURE CELLULAIRE</topic><topic>SYNTHESE PROTEIQUE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, R.H. (University of Colorado, Boulder, CO)</creatorcontrib><creatorcontrib>Ramirez, W.F</creatorcontrib><creatorcontrib>Chatterjee, A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, R.H. (University of Colorado, Boulder, CO)</au><au>Ramirez, W.F</au><au>Chatterjee, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal chemostat cascades for periplasmic protein production</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>1990-11</date><risdate>1990</risdate><volume>6</volume><issue>6</issue><spage>430</spage><epage>436</epage><pages>430-436</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>This theoretical work predicts the optimal system design for the steady‐state production of secreted protein in a chemostat cascade, using bakers' yeast (Saccharomyces cerevisiae) as the host organism. The protein of interest, mutant invertase, is secreted to the periplasmic space instead of the culture medium on account of its large size. This work uses the secretion model developed and tested by Park and Ramirez (1988). It is shown that the highest productivity is achieved when the chemostat cascade contains two stages, although the improvement over the single‐stage productivity is small. When no recycle is used, the advantage of two stages results from the tradeoff between maximizing the cell concentration and maximizing the rate of protein production per cell. When recycle is used, the cell concentration and protein productivity are increased, and the advantage of two stages results from the tradeoff between maximizing the specific protein production rate and maximizing the specific protein secretion rate. Cascades with three stages were also investigated, but these were found to have no improvement over the corresponding two‐stage cascades.</abstract><cop>USA</cop><pub>American Chemical Society</pub><pmid>1366833</pmid><doi>10.1021/bp00006a005</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 1990-11, Vol.6 (6), p.430-436
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_80265080
source MEDLINE; ACS Publications
subjects BETA-FRUCTOFURANOSIDASE
Biological and medical sciences
BIOREACTEUR
BIOREACTORS
BIORREACTORES
BIOTECHNOLOGIE
BIOTECHNOLOGY
BIOTECNOLOGIA
CELL CULTURE
CELL STRUCTURE
CELL ULTRASTRUCTURE
Cloning, Molecular
continuous culture
CULTIVO DE CELULAS
CULTURE DE CELLULE
ESTRUCTURA CELULAR
FRUCTOFURANOSIDASA
FRUCTOFURANOSIDASE
Fundamental and applied biological sciences. Psychology
Genetic Engineering
Glycoside Hydrolases - biosynthesis
Glycoside Hydrolases - genetics
Glycoside Hydrolases - secretion
Kinetics
MATHEMATICAL MODELS
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
MODELE MATHEMATIQUE
MODELOS MATEMATICOS
MUTANT
MUTANTES
MUTANTS
Mutation
periplasmic space
PROTEIN SYNTHESIS
PROTEINAS
PROTEINE
PROTEINS
Recombinant Proteins - biosynthesis
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - growth & development
SECRECION
SECRETION
secretion models
SINTESIS DE PROTEINAS
STRUCTURE CELLULAIRE
SYNTHESE PROTEIQUE
title Optimal chemostat cascades for periplasmic protein production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20chemostat%20cascades%20for%20periplasmic%20protein%20production&rft.jtitle=Biotechnology%20progress&rft.au=Davis,%20R.H.%20(University%20of%20Colorado,%20Boulder,%20CO)&rft.date=1990-11&rft.volume=6&rft.issue=6&rft.spage=430&rft.epage=436&rft.pages=430-436&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1021/bp00006a005&rft_dat=%3Cproquest_cross%3E16608508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16608508&rft_id=info:pmid/1366833&rfr_iscdi=true