Covariate Analysis of Survival Data: A Small-Sample Study of Cox's Model

Cox's proportional-hazards model is frequently used to adjust for covariate effects in survival-data analysis. The small-sample performances of the maximum partial likelihood estimators of the regression parameters in a two-covariate hazard function model are evaluated with respect to bias, var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 1982-09, Vol.38 (3), p.685-698
Hauptverfasser: Johnson, Mark E., Tolley, H. Dennis, Bryson, Maurice C., Goldman, Aaron S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 698
container_issue 3
container_start_page 685
container_title Biometrics
container_volume 38
creator Johnson, Mark E.
Tolley, H. Dennis
Bryson, Maurice C.
Goldman, Aaron S.
description Cox's proportional-hazards model is frequently used to adjust for covariate effects in survival-data analysis. The small-sample performances of the maximum partial likelihood estimators of the regression parameters in a two-covariate hazard function model are evaluated with respect to bias, variance, and power in hypothesis tests. Previous Monte Carlo work on the two-sample problem is reviewed.
doi_str_mv 10.2307/2530049
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_80208629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2530049</jstor_id><sourcerecordid>2530049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-c1b8786fd18be273835a0b3539874f41acc994bcd5ee527d4f3900f4b9240e4c3</originalsourceid><addsrcrecordid>eNp10EtLw0AUBeBBlFqr-AuEIGJX0TuvJOOuxEeFiosouAuTyQQjk07NTIr996YkuHN1uZyPszgInWO4IRTiW8IpABMHaIo5wyEwAodoCgBRSBn-OEYnzn31r-BAJmgS4xhHIpqiZWq3sq2l18FiLc3O1S6wVZB17bbeShPcSy_vgkWQNdKYMJPNxugg812527PU_sxd8GJLbU7RUSWN02fjnaH3x4e3dBmuXp-e08UqVJQSHypcJHESVSVOCk1imlAuoaCciiRmFcNSKSFYoUquNSdxySoqACpWCMJAM0Vn6HLotc7XuVO11-pT2fVaK5_zGDPMkx5dD2jT2u9OO583tVPaGLnWtnN5AgSSiIgezgeoWutcq6t809aNbHc5hnw_bD4O28uLsbIrGl3-uXHJPr8a8i_nbftvzS8wnnqr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80208629</pqid></control><display><type>article</type><title>Covariate Analysis of Survival Data: A Small-Sample Study of Cox's Model</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Johnson, Mark E. ; Tolley, H. Dennis ; Bryson, Maurice C. ; Goldman, Aaron S.</creator><creatorcontrib>Johnson, Mark E. ; Tolley, H. Dennis ; Bryson, Maurice C. ; Goldman, Aaron S.</creatorcontrib><description>Cox's proportional-hazards model is frequently used to adjust for covariate effects in survival-data analysis. The small-sample performances of the maximum partial likelihood estimators of the regression parameters in a two-covariate hazard function model are evaluated with respect to bias, variance, and power in hypothesis tests. Previous Monte Carlo work on the two-sample problem is reviewed.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.2307/2530049</identifier><identifier>PMID: 7171696</identifier><language>eng</language><publisher>United States: Biometric Society</publisher><subject>560000 - Biomedical Sciences, Applied Studies ; 570000 - Health &amp; Safety ; Analysis of Variance ; Asymptotic value ; Biometrics ; Censorship ; Covariance ; Estimation bias ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Humans ; MATHEMATICAL MODELS ; Mathematical monotonicity ; MATHEMATICS ; Modeling ; Models, Biological ; MONTE CARLO METHOD ; Mortality ; Papers on the Analysis of Covariance ; PARAMETRIC ANALYSIS ; RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT ; REGRESSION ANALYSIS ; Research Design ; Sampling bias ; Statistical discrepancies ; Statistical variance ; STATISTICS ; SURVIVAL CURVES ; SURVIVAL TIME ; TIME DEPENDENCE</subject><ispartof>Biometrics, 1982-09, Vol.38 (3), p.685-698</ispartof><rights>Copyright 1982 The Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-c1b8786fd18be273835a0b3539874f41acc994bcd5ee527d4f3900f4b9240e4c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2530049$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2530049$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,882,27905,27906,57998,58002,58231,58235</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7171696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5714158$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Mark E.</creatorcontrib><creatorcontrib>Tolley, H. Dennis</creatorcontrib><creatorcontrib>Bryson, Maurice C.</creatorcontrib><creatorcontrib>Goldman, Aaron S.</creatorcontrib><title>Covariate Analysis of Survival Data: A Small-Sample Study of Cox's Model</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Cox's proportional-hazards model is frequently used to adjust for covariate effects in survival-data analysis. The small-sample performances of the maximum partial likelihood estimators of the regression parameters in a two-covariate hazard function model are evaluated with respect to bias, variance, and power in hypothesis tests. Previous Monte Carlo work on the two-sample problem is reviewed.</description><subject>560000 - Biomedical Sciences, Applied Studies</subject><subject>570000 - Health &amp; Safety</subject><subject>Analysis of Variance</subject><subject>Asymptotic value</subject><subject>Biometrics</subject><subject>Censorship</subject><subject>Covariance</subject><subject>Estimation bias</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Humans</subject><subject>MATHEMATICAL MODELS</subject><subject>Mathematical monotonicity</subject><subject>MATHEMATICS</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>MONTE CARLO METHOD</subject><subject>Mortality</subject><subject>Papers on the Analysis of Covariance</subject><subject>PARAMETRIC ANALYSIS</subject><subject>RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT</subject><subject>REGRESSION ANALYSIS</subject><subject>Research Design</subject><subject>Sampling bias</subject><subject>Statistical discrepancies</subject><subject>Statistical variance</subject><subject>STATISTICS</subject><subject>SURVIVAL CURVES</subject><subject>SURVIVAL TIME</subject><subject>TIME DEPENDENCE</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10EtLw0AUBeBBlFqr-AuEIGJX0TuvJOOuxEeFiosouAuTyQQjk07NTIr996YkuHN1uZyPszgInWO4IRTiW8IpABMHaIo5wyEwAodoCgBRSBn-OEYnzn31r-BAJmgS4xhHIpqiZWq3sq2l18FiLc3O1S6wVZB17bbeShPcSy_vgkWQNdKYMJPNxugg812527PU_sxd8GJLbU7RUSWN02fjnaH3x4e3dBmuXp-e08UqVJQSHypcJHESVSVOCk1imlAuoaCciiRmFcNSKSFYoUquNSdxySoqACpWCMJAM0Vn6HLotc7XuVO11-pT2fVaK5_zGDPMkx5dD2jT2u9OO583tVPaGLnWtnN5AgSSiIgezgeoWutcq6t809aNbHc5hnw_bD4O28uLsbIrGl3-uXHJPr8a8i_nbftvzS8wnnqr</recordid><startdate>198209</startdate><enddate>198209</enddate><creator>Johnson, Mark E.</creator><creator>Tolley, H. Dennis</creator><creator>Bryson, Maurice C.</creator><creator>Goldman, Aaron S.</creator><general>Biometric Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>198209</creationdate><title>Covariate Analysis of Survival Data: A Small-Sample Study of Cox's Model</title><author>Johnson, Mark E. ; Tolley, H. Dennis ; Bryson, Maurice C. ; Goldman, Aaron S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-c1b8786fd18be273835a0b3539874f41acc994bcd5ee527d4f3900f4b9240e4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>560000 - Biomedical Sciences, Applied Studies</topic><topic>570000 - Health &amp; Safety</topic><topic>Analysis of Variance</topic><topic>Asymptotic value</topic><topic>Biometrics</topic><topic>Censorship</topic><topic>Covariance</topic><topic>Estimation bias</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Humans</topic><topic>MATHEMATICAL MODELS</topic><topic>Mathematical monotonicity</topic><topic>MATHEMATICS</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>MONTE CARLO METHOD</topic><topic>Mortality</topic><topic>Papers on the Analysis of Covariance</topic><topic>PARAMETRIC ANALYSIS</topic><topic>RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT</topic><topic>REGRESSION ANALYSIS</topic><topic>Research Design</topic><topic>Sampling bias</topic><topic>Statistical discrepancies</topic><topic>Statistical variance</topic><topic>STATISTICS</topic><topic>SURVIVAL CURVES</topic><topic>SURVIVAL TIME</topic><topic>TIME DEPENDENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Mark E.</creatorcontrib><creatorcontrib>Tolley, H. Dennis</creatorcontrib><creatorcontrib>Bryson, Maurice C.</creatorcontrib><creatorcontrib>Goldman, Aaron S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Mark E.</au><au>Tolley, H. Dennis</au><au>Bryson, Maurice C.</au><au>Goldman, Aaron S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covariate Analysis of Survival Data: A Small-Sample Study of Cox's Model</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>1982-09</date><risdate>1982</risdate><volume>38</volume><issue>3</issue><spage>685</spage><epage>698</epage><pages>685-698</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Cox's proportional-hazards model is frequently used to adjust for covariate effects in survival-data analysis. The small-sample performances of the maximum partial likelihood estimators of the regression parameters in a two-covariate hazard function model are evaluated with respect to bias, variance, and power in hypothesis tests. Previous Monte Carlo work on the two-sample problem is reviewed.</abstract><cop>United States</cop><pub>Biometric Society</pub><pmid>7171696</pmid><doi>10.2307/2530049</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 1982-09, Vol.38 (3), p.685-698
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_80208629
source MEDLINE; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects 560000 - Biomedical Sciences, Applied Studies
570000 - Health & Safety
Analysis of Variance
Asymptotic value
Biometrics
Censorship
Covariance
Estimation bias
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Humans
MATHEMATICAL MODELS
Mathematical monotonicity
MATHEMATICS
Modeling
Models, Biological
MONTE CARLO METHOD
Mortality
Papers on the Analysis of Covariance
PARAMETRIC ANALYSIS
RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT
REGRESSION ANALYSIS
Research Design
Sampling bias
Statistical discrepancies
Statistical variance
STATISTICS
SURVIVAL CURVES
SURVIVAL TIME
TIME DEPENDENCE
title Covariate Analysis of Survival Data: A Small-Sample Study of Cox's Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covariate%20Analysis%20of%20Survival%20Data:%20A%20Small-Sample%20Study%20of%20Cox's%20Model&rft.jtitle=Biometrics&rft.au=Johnson,%20Mark%20E.&rft.date=1982-09&rft.volume=38&rft.issue=3&rft.spage=685&rft.epage=698&rft.pages=685-698&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.2307/2530049&rft_dat=%3Cjstor_osti_%3E2530049%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80208629&rft_id=info:pmid/7171696&rft_jstor_id=2530049&rfr_iscdi=true