The Incidence and Prediction of Automatically Detected Intraoperative Cardiovascular Events in Noncardiac Surgery
The objective of this study was to evaluate prognostic models for quality assurance purposes in predicting automatically detected intraoperative cardiovascular events (CVE) in 58,458 patients undergoing noncardiac surgery. To this end, we assessed the performance of two established models for risk a...
Gespeichert in:
Veröffentlicht in: | Anesthesia and analgesia 2004-03, Vol.98 (3), p.569-577 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this study was to evaluate prognostic models for quality assurance purposes in predicting automatically detected intraoperative cardiovascular events (CVE) in 58,458 patients undergoing noncardiac surgery. To this end, we assessed the performance of two established models for risk assessment in anesthesia, the Revised Cardiac Risk Index (RCRI) and the ASA physical status classification. We then developed two new models. CVEs were detected from the database of an electronic anesthesia record-keeping system. Logistic regression was used to build a complex and a simple predictive model. Performance of the prognostic models was assessed using analysis of discrimination and calibration. In 5249 patients (17.8%) of the evaluation (n = 29,437) and 5031 patients (17.3%) of the validation cohorts (n = 29,021), a minimum of one CVE was detected. CVEs were associated with significantly more frequent hospital mortality (2.1% versus 1.0%; P < 0.01). The new models demonstrated good discriminative power, with an area under the receiver operating characteristic curve (AUC) of 0.709 and 0.707 respectively. Discrimination of the ASA classification (AUC 0.647) and the RCRI (AUC 0.620) were less. Neither the two new models nor ASA classification nor the RCRI showed acceptable calibration. ASA classification and the RCRI alone both proved unsuitable for the prediction of intraoperative CVEs. |
---|---|
ISSN: | 0003-2999 1526-7598 |
DOI: | 10.1213/01.ANE.0000103262.26387.9C |