Crosstalk between protein kinase A and C regulates phospholipase D and F-actin formation during sperm capacitation
Mammalian spermatozoa should reside in the female reproductive tract for a certain time before gaining the ability to fertilize. During this time, the spermatozoa undergo a series of biochemical processes collectively called capacitation. We recently demonstrated that actin polymerization is a neces...
Gespeichert in:
Veröffentlicht in: | Developmental biology 2004-03, Vol.267 (1), p.230-241 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mammalian spermatozoa should reside in the female reproductive tract for a certain time before gaining the ability to fertilize. During this time, the spermatozoa undergo a series of biochemical processes collectively called capacitation. We recently demonstrated that actin polymerization is a necessary step in the cascade leading to capacitation. We demonstrate here for the first time a role for phospholipase D (PLD) in the induction of actin polymerization and capacitation in spermatozoa. The involvement of PLD is supported by specific inhibition of F-actin formation during sperm capacitation by PLD inhibitors and the stimulation of fast F-actin formation by exogenous PLD or phosphatidic acid (PA). Moreover, PLD activity is enhanced during capacitation before actin polymerization. Protein kinase A (PKA), known to be active in sperm capacitation, and protein kinase C (PKC), involved in the acrosome reaction, can both activate PLD and actin polymerization. We suggest that PKA- and PKC-dependent signal transduction pathways can potentially lead to PLD activation; however, under physiological conditions, actin polymerization depends primarily on PKA activity. Activation of PKA during capacitation causes inactivation of phospholipase C, and as a result, PKC activation is prevented. It appears that PKA activation promotes sperm capacitation whereas early activation of PKC during capacitation would jeopardize this process. |
---|---|
ISSN: | 0012-1606 |
DOI: | 10.1016/j.ydbio.2003.10.034 |