A Proteomic Analysis of Maize Chloroplast Biogenesis
Proteomics studies to explore global patterns of protein expression in plant and green algal systems have proliferated within the past few years. Although most of these studies have involved mapping of the proteomes of various organs, tissues, cells, or organelles, comparative proteomics experiments...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2004-02, Vol.134 (2), p.560-574 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 574 |
---|---|
container_issue | 2 |
container_start_page | 560 |
container_title | Plant physiology (Bethesda) |
container_volume | 134 |
creator | LONOSKY, Patricia M XIAOSI ZHANG HONAVAR, Vasant G DOBBS, Drena L AIGEN FU RODERMEL, Steve R |
description | Proteomics studies to explore global patterns of protein expression in plant and green algal systems have proliferated within the past few years. Although most of these studies have involved mapping of the proteomes of various organs, tissues, cells, or organelles, comparative proteomics experiments have also led to the identification of proteins that change in abundance in various developmental or physiological contexts. Despite the growing use of proteomics in plant studies, questions of reproducibility have not generally been addressed, nor have quantitative methods been widely used, for example, to identify protein expression classes. In this report, we use the de-etiolation ("greening") of maize (Zea mays) chloroplasts as a model system to explore these questions, and we outline a reproducible protocol to identify changes in the plastid proteome that occur during the greening process using techniques of two-dimensional gel electrophoresis and mass spectrometry. We also evaluate hierarchical and nonhierarchical statistical methods to analyze the patterns of expression of 526 "high-quality," unique spots on the two-dimensional gels. We conclude that Adaptive Resonance Theory 2-a nonhierarchical, neural clustering technique that has not been previously applied to gene expression data-is a powerful technique for discriminating protein expression classes during greening. Our experiments provide a foundation for the use of proteomics in the design of experiments to address fundamental questions in plant physiology and molecular biology. |
doi_str_mv | 10.1104/pp.103.032003 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_80158585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281587</jstor_id><sourcerecordid>4281587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-43c7979e18de0687076a3b92c714eb75d99490973a1bf7ad0c9cffc5b2a532d83</originalsourceid><addsrcrecordid>eNpF0D1PwzAQBmALgWgpjGwIZYEt5fyR2B5LxZdUBAPMkeM4EJTExk6H8usxSkTl4ay7Ryf7RegcwxJjYDfOLTHQJVACQA_QHGeUpCRj4hDNY4ekIIScoZMQvgAAU8yO0QwzmeeE5XPEVsmrt4OxXaOTVa_aXWhCYuvkWTU_Jll_ttZb16owJLeN_TC9ifNTdFSrNpizqS7Q-_3d2_ox3bw8PK1Xm1QzgYeUUc0llwaLykAuOPBc0VISzTEzJc8qKZkEyanCZc1VBVrqutZZSVT8RCXoAl2Pe52331sThqJrgjZtq3pjt6EQgDMRT4TpCLW3IXhTF843nfK7AkPxF1PhXLzSYowp-stp8bbsTLXXUy4RXE1ABa3a2qteN2HvYr5C5Di6i9F9hcH6_zkjIr6M018Jv3eP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80158585</pqid></control><display><type>article</type><title>A Proteomic Analysis of Maize Chloroplast Biogenesis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>LONOSKY, Patricia M ; XIAOSI ZHANG ; HONAVAR, Vasant G ; DOBBS, Drena L ; AIGEN FU ; RODERMEL, Steve R</creator><creatorcontrib>LONOSKY, Patricia M ; XIAOSI ZHANG ; HONAVAR, Vasant G ; DOBBS, Drena L ; AIGEN FU ; RODERMEL, Steve R</creatorcontrib><description>Proteomics studies to explore global patterns of protein expression in plant and green algal systems have proliferated within the past few years. Although most of these studies have involved mapping of the proteomes of various organs, tissues, cells, or organelles, comparative proteomics experiments have also led to the identification of proteins that change in abundance in various developmental or physiological contexts. Despite the growing use of proteomics in plant studies, questions of reproducibility have not generally been addressed, nor have quantitative methods been widely used, for example, to identify protein expression classes. In this report, we use the de-etiolation ("greening") of maize (Zea mays) chloroplasts as a model system to explore these questions, and we outline a reproducible protocol to identify changes in the plastid proteome that occur during the greening process using techniques of two-dimensional gel electrophoresis and mass spectrometry. We also evaluate hierarchical and nonhierarchical statistical methods to analyze the patterns of expression of 526 "high-quality," unique spots on the two-dimensional gels. We conclude that Adaptive Resonance Theory 2-a nonhierarchical, neural clustering technique that has not been previously applied to gene expression data-is a powerful technique for discriminating protein expression classes during greening. Our experiments provide a foundation for the use of proteomics in the design of experiments to address fundamental questions in plant physiology and molecular biology.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.032003</identifier><identifier>PMID: 14966246</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Agronomy. Soil science and plant productions ; Bioinformatics ; Biological and medical sciences ; Chloroplasts ; Chloroplasts - genetics ; Chloroplasts - metabolism ; Computer software ; Corn ; Economic plant physiology ; Electrophoresis ; Fundamental and applied biological sciences. Psychology ; Gels ; Gene Expression Profiling - methods ; Gene Expression Profiling - statistics & numerical data ; Genes. Genome ; Greening ; Metabolism ; Molecular and cellular biology ; Molecular genetics ; Net assimilation, photosynthesis, carbon metabolism. Photorespiration, respiration, fermentation (anoxia, hypoxia) ; Nutrition. Photosynthesis. Respiration. Metabolism ; Photosynthesis, respiration. Anabolism, catabolism ; Phylogeny ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plastids ; Proteomes ; Proteomics ; Proteomics - methods ; Proteomics - statistics & numerical data ; Research Design - statistics & numerical data ; Zea mays - genetics ; Zea mays - metabolism</subject><ispartof>Plant physiology (Bethesda), 2004-02, Vol.134 (2), p.560-574</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-43c7979e18de0687076a3b92c714eb75d99490973a1bf7ad0c9cffc5b2a532d83</citedby><cites>FETCH-LOGICAL-c481t-43c7979e18de0687076a3b92c714eb75d99490973a1bf7ad0c9cffc5b2a532d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281587$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281587$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15488861$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14966246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LONOSKY, Patricia M</creatorcontrib><creatorcontrib>XIAOSI ZHANG</creatorcontrib><creatorcontrib>HONAVAR, Vasant G</creatorcontrib><creatorcontrib>DOBBS, Drena L</creatorcontrib><creatorcontrib>AIGEN FU</creatorcontrib><creatorcontrib>RODERMEL, Steve R</creatorcontrib><title>A Proteomic Analysis of Maize Chloroplast Biogenesis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Proteomics studies to explore global patterns of protein expression in plant and green algal systems have proliferated within the past few years. Although most of these studies have involved mapping of the proteomes of various organs, tissues, cells, or organelles, comparative proteomics experiments have also led to the identification of proteins that change in abundance in various developmental or physiological contexts. Despite the growing use of proteomics in plant studies, questions of reproducibility have not generally been addressed, nor have quantitative methods been widely used, for example, to identify protein expression classes. In this report, we use the de-etiolation ("greening") of maize (Zea mays) chloroplasts as a model system to explore these questions, and we outline a reproducible protocol to identify changes in the plastid proteome that occur during the greening process using techniques of two-dimensional gel electrophoresis and mass spectrometry. We also evaluate hierarchical and nonhierarchical statistical methods to analyze the patterns of expression of 526 "high-quality," unique spots on the two-dimensional gels. We conclude that Adaptive Resonance Theory 2-a nonhierarchical, neural clustering technique that has not been previously applied to gene expression data-is a powerful technique for discriminating protein expression classes during greening. Our experiments provide a foundation for the use of proteomics in the design of experiments to address fundamental questions in plant physiology and molecular biology.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Chloroplasts</subject><subject>Chloroplasts - genetics</subject><subject>Chloroplasts - metabolism</subject><subject>Computer software</subject><subject>Corn</subject><subject>Economic plant physiology</subject><subject>Electrophoresis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Profiling - statistics & numerical data</subject><subject>Genes. Genome</subject><subject>Greening</subject><subject>Metabolism</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Net assimilation, photosynthesis, carbon metabolism. Photorespiration, respiration, fermentation (anoxia, hypoxia)</subject><subject>Nutrition. Photosynthesis. Respiration. Metabolism</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>Phylogeny</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plastids</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Proteomics - statistics & numerical data</subject><subject>Research Design - statistics & numerical data</subject><subject>Zea mays - genetics</subject><subject>Zea mays - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0D1PwzAQBmALgWgpjGwIZYEt5fyR2B5LxZdUBAPMkeM4EJTExk6H8usxSkTl4ay7Ryf7RegcwxJjYDfOLTHQJVACQA_QHGeUpCRj4hDNY4ekIIScoZMQvgAAU8yO0QwzmeeE5XPEVsmrt4OxXaOTVa_aXWhCYuvkWTU_Jll_ttZb16owJLeN_TC9ifNTdFSrNpizqS7Q-_3d2_ox3bw8PK1Xm1QzgYeUUc0llwaLykAuOPBc0VISzTEzJc8qKZkEyanCZc1VBVrqutZZSVT8RCXoAl2Pe52331sThqJrgjZtq3pjt6EQgDMRT4TpCLW3IXhTF843nfK7AkPxF1PhXLzSYowp-stp8bbsTLXXUy4RXE1ABa3a2qteN2HvYr5C5Di6i9F9hcH6_zkjIr6M018Jv3eP</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>LONOSKY, Patricia M</creator><creator>XIAOSI ZHANG</creator><creator>HONAVAR, Vasant G</creator><creator>DOBBS, Drena L</creator><creator>AIGEN FU</creator><creator>RODERMEL, Steve R</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040201</creationdate><title>A Proteomic Analysis of Maize Chloroplast Biogenesis</title><author>LONOSKY, Patricia M ; XIAOSI ZHANG ; HONAVAR, Vasant G ; DOBBS, Drena L ; AIGEN FU ; RODERMEL, Steve R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-43c7979e18de0687076a3b92c714eb75d99490973a1bf7ad0c9cffc5b2a532d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Chloroplasts</topic><topic>Chloroplasts - genetics</topic><topic>Chloroplasts - metabolism</topic><topic>Computer software</topic><topic>Corn</topic><topic>Economic plant physiology</topic><topic>Electrophoresis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Profiling - statistics & numerical data</topic><topic>Genes. Genome</topic><topic>Greening</topic><topic>Metabolism</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Net assimilation, photosynthesis, carbon metabolism. Photorespiration, respiration, fermentation (anoxia, hypoxia)</topic><topic>Nutrition. Photosynthesis. Respiration. Metabolism</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>Phylogeny</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plastids</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Proteomics - statistics & numerical data</topic><topic>Research Design - statistics & numerical data</topic><topic>Zea mays - genetics</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LONOSKY, Patricia M</creatorcontrib><creatorcontrib>XIAOSI ZHANG</creatorcontrib><creatorcontrib>HONAVAR, Vasant G</creatorcontrib><creatorcontrib>DOBBS, Drena L</creatorcontrib><creatorcontrib>AIGEN FU</creatorcontrib><creatorcontrib>RODERMEL, Steve R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LONOSKY, Patricia M</au><au>XIAOSI ZHANG</au><au>HONAVAR, Vasant G</au><au>DOBBS, Drena L</au><au>AIGEN FU</au><au>RODERMEL, Steve R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Proteomic Analysis of Maize Chloroplast Biogenesis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-02-01</date><risdate>2004</risdate><volume>134</volume><issue>2</issue><spage>560</spage><epage>574</epage><pages>560-574</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Proteomics studies to explore global patterns of protein expression in plant and green algal systems have proliferated within the past few years. Although most of these studies have involved mapping of the proteomes of various organs, tissues, cells, or organelles, comparative proteomics experiments have also led to the identification of proteins that change in abundance in various developmental or physiological contexts. Despite the growing use of proteomics in plant studies, questions of reproducibility have not generally been addressed, nor have quantitative methods been widely used, for example, to identify protein expression classes. In this report, we use the de-etiolation ("greening") of maize (Zea mays) chloroplasts as a model system to explore these questions, and we outline a reproducible protocol to identify changes in the plastid proteome that occur during the greening process using techniques of two-dimensional gel electrophoresis and mass spectrometry. We also evaluate hierarchical and nonhierarchical statistical methods to analyze the patterns of expression of 526 "high-quality," unique spots on the two-dimensional gels. We conclude that Adaptive Resonance Theory 2-a nonhierarchical, neural clustering technique that has not been previously applied to gene expression data-is a powerful technique for discriminating protein expression classes during greening. Our experiments provide a foundation for the use of proteomics in the design of experiments to address fundamental questions in plant physiology and molecular biology.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>14966246</pmid><doi>10.1104/pp.103.032003</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2004-02, Vol.134 (2), p.560-574 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_80158585 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Agronomy. Soil science and plant productions Bioinformatics Biological and medical sciences Chloroplasts Chloroplasts - genetics Chloroplasts - metabolism Computer software Corn Economic plant physiology Electrophoresis Fundamental and applied biological sciences. Psychology Gels Gene Expression Profiling - methods Gene Expression Profiling - statistics & numerical data Genes. Genome Greening Metabolism Molecular and cellular biology Molecular genetics Net assimilation, photosynthesis, carbon metabolism. Photorespiration, respiration, fermentation (anoxia, hypoxia) Nutrition. Photosynthesis. Respiration. Metabolism Photosynthesis, respiration. Anabolism, catabolism Phylogeny Plant physiology and development Plant Proteins - genetics Plant Proteins - metabolism Plants Plastids Proteomes Proteomics Proteomics - methods Proteomics - statistics & numerical data Research Design - statistics & numerical data Zea mays - genetics Zea mays - metabolism |
title | A Proteomic Analysis of Maize Chloroplast Biogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Proteomic%20Analysis%20of%20Maize%20Chloroplast%20Biogenesis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=LONOSKY,%20Patricia%20M&rft.date=2004-02-01&rft.volume=134&rft.issue=2&rft.spage=560&rft.epage=574&rft.pages=560-574&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.103.032003&rft_dat=%3Cjstor_proqu%3E4281587%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80158585&rft_id=info:pmid/14966246&rft_jstor_id=4281587&rfr_iscdi=true |