A Proteomic Analysis of Maize Chloroplast Biogenesis

Proteomics studies to explore global patterns of protein expression in plant and green algal systems have proliferated within the past few years. Although most of these studies have involved mapping of the proteomes of various organs, tissues, cells, or organelles, comparative proteomics experiments...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2004-02, Vol.134 (2), p.560-574
Hauptverfasser: LONOSKY, Patricia M, XIAOSI ZHANG, HONAVAR, Vasant G, DOBBS, Drena L, AIGEN FU, RODERMEL, Steve R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 574
container_issue 2
container_start_page 560
container_title Plant physiology (Bethesda)
container_volume 134
creator LONOSKY, Patricia M
XIAOSI ZHANG
HONAVAR, Vasant G
DOBBS, Drena L
AIGEN FU
RODERMEL, Steve R
description Proteomics studies to explore global patterns of protein expression in plant and green algal systems have proliferated within the past few years. Although most of these studies have involved mapping of the proteomes of various organs, tissues, cells, or organelles, comparative proteomics experiments have also led to the identification of proteins that change in abundance in various developmental or physiological contexts. Despite the growing use of proteomics in plant studies, questions of reproducibility have not generally been addressed, nor have quantitative methods been widely used, for example, to identify protein expression classes. In this report, we use the de-etiolation ("greening") of maize (Zea mays) chloroplasts as a model system to explore these questions, and we outline a reproducible protocol to identify changes in the plastid proteome that occur during the greening process using techniques of two-dimensional gel electrophoresis and mass spectrometry. We also evaluate hierarchical and nonhierarchical statistical methods to analyze the patterns of expression of 526 "high-quality," unique spots on the two-dimensional gels. We conclude that Adaptive Resonance Theory 2-a nonhierarchical, neural clustering technique that has not been previously applied to gene expression data-is a powerful technique for discriminating protein expression classes during greening. Our experiments provide a foundation for the use of proteomics in the design of experiments to address fundamental questions in plant physiology and molecular biology.
doi_str_mv 10.1104/pp.103.032003
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_80158585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281587</jstor_id><sourcerecordid>4281587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-43c7979e18de0687076a3b92c714eb75d99490973a1bf7ad0c9cffc5b2a532d83</originalsourceid><addsrcrecordid>eNpF0D1PwzAQBmALgWgpjGwIZYEt5fyR2B5LxZdUBAPMkeM4EJTExk6H8usxSkTl4ay7Ryf7RegcwxJjYDfOLTHQJVACQA_QHGeUpCRj4hDNY4ekIIScoZMQvgAAU8yO0QwzmeeE5XPEVsmrt4OxXaOTVa_aXWhCYuvkWTU_Jll_ttZb16owJLeN_TC9ifNTdFSrNpizqS7Q-_3d2_ox3bw8PK1Xm1QzgYeUUc0llwaLykAuOPBc0VISzTEzJc8qKZkEyanCZc1VBVrqutZZSVT8RCXoAl2Pe52331sThqJrgjZtq3pjt6EQgDMRT4TpCLW3IXhTF843nfK7AkPxF1PhXLzSYowp-stp8bbsTLXXUy4RXE1ABa3a2qteN2HvYr5C5Di6i9F9hcH6_zkjIr6M018Jv3eP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80158585</pqid></control><display><type>article</type><title>A Proteomic Analysis of Maize Chloroplast Biogenesis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>LONOSKY, Patricia M ; XIAOSI ZHANG ; HONAVAR, Vasant G ; DOBBS, Drena L ; AIGEN FU ; RODERMEL, Steve R</creator><creatorcontrib>LONOSKY, Patricia M ; XIAOSI ZHANG ; HONAVAR, Vasant G ; DOBBS, Drena L ; AIGEN FU ; RODERMEL, Steve R</creatorcontrib><description>Proteomics studies to explore global patterns of protein expression in plant and green algal systems have proliferated within the past few years. Although most of these studies have involved mapping of the proteomes of various organs, tissues, cells, or organelles, comparative proteomics experiments have also led to the identification of proteins that change in abundance in various developmental or physiological contexts. Despite the growing use of proteomics in plant studies, questions of reproducibility have not generally been addressed, nor have quantitative methods been widely used, for example, to identify protein expression classes. In this report, we use the de-etiolation ("greening") of maize (Zea mays) chloroplasts as a model system to explore these questions, and we outline a reproducible protocol to identify changes in the plastid proteome that occur during the greening process using techniques of two-dimensional gel electrophoresis and mass spectrometry. We also evaluate hierarchical and nonhierarchical statistical methods to analyze the patterns of expression of 526 "high-quality," unique spots on the two-dimensional gels. We conclude that Adaptive Resonance Theory 2-a nonhierarchical, neural clustering technique that has not been previously applied to gene expression data-is a powerful technique for discriminating protein expression classes during greening. Our experiments provide a foundation for the use of proteomics in the design of experiments to address fundamental questions in plant physiology and molecular biology.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.032003</identifier><identifier>PMID: 14966246</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Agronomy. Soil science and plant productions ; Bioinformatics ; Biological and medical sciences ; Chloroplasts ; Chloroplasts - genetics ; Chloroplasts - metabolism ; Computer software ; Corn ; Economic plant physiology ; Electrophoresis ; Fundamental and applied biological sciences. Psychology ; Gels ; Gene Expression Profiling - methods ; Gene Expression Profiling - statistics &amp; numerical data ; Genes. Genome ; Greening ; Metabolism ; Molecular and cellular biology ; Molecular genetics ; Net assimilation, photosynthesis, carbon metabolism. Photorespiration, respiration, fermentation (anoxia, hypoxia) ; Nutrition. Photosynthesis. Respiration. Metabolism ; Photosynthesis, respiration. Anabolism, catabolism ; Phylogeny ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plastids ; Proteomes ; Proteomics ; Proteomics - methods ; Proteomics - statistics &amp; numerical data ; Research Design - statistics &amp; numerical data ; Zea mays - genetics ; Zea mays - metabolism</subject><ispartof>Plant physiology (Bethesda), 2004-02, Vol.134 (2), p.560-574</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-43c7979e18de0687076a3b92c714eb75d99490973a1bf7ad0c9cffc5b2a532d83</citedby><cites>FETCH-LOGICAL-c481t-43c7979e18de0687076a3b92c714eb75d99490973a1bf7ad0c9cffc5b2a532d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281587$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281587$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15488861$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14966246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LONOSKY, Patricia M</creatorcontrib><creatorcontrib>XIAOSI ZHANG</creatorcontrib><creatorcontrib>HONAVAR, Vasant G</creatorcontrib><creatorcontrib>DOBBS, Drena L</creatorcontrib><creatorcontrib>AIGEN FU</creatorcontrib><creatorcontrib>RODERMEL, Steve R</creatorcontrib><title>A Proteomic Analysis of Maize Chloroplast Biogenesis</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Proteomics studies to explore global patterns of protein expression in plant and green algal systems have proliferated within the past few years. Although most of these studies have involved mapping of the proteomes of various organs, tissues, cells, or organelles, comparative proteomics experiments have also led to the identification of proteins that change in abundance in various developmental or physiological contexts. Despite the growing use of proteomics in plant studies, questions of reproducibility have not generally been addressed, nor have quantitative methods been widely used, for example, to identify protein expression classes. In this report, we use the de-etiolation ("greening") of maize (Zea mays) chloroplasts as a model system to explore these questions, and we outline a reproducible protocol to identify changes in the plastid proteome that occur during the greening process using techniques of two-dimensional gel electrophoresis and mass spectrometry. We also evaluate hierarchical and nonhierarchical statistical methods to analyze the patterns of expression of 526 "high-quality," unique spots on the two-dimensional gels. We conclude that Adaptive Resonance Theory 2-a nonhierarchical, neural clustering technique that has not been previously applied to gene expression data-is a powerful technique for discriminating protein expression classes during greening. Our experiments provide a foundation for the use of proteomics in the design of experiments to address fundamental questions in plant physiology and molecular biology.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Chloroplasts</subject><subject>Chloroplasts - genetics</subject><subject>Chloroplasts - metabolism</subject><subject>Computer software</subject><subject>Corn</subject><subject>Economic plant physiology</subject><subject>Electrophoresis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Profiling - statistics &amp; numerical data</subject><subject>Genes. Genome</subject><subject>Greening</subject><subject>Metabolism</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Net assimilation, photosynthesis, carbon metabolism. Photorespiration, respiration, fermentation (anoxia, hypoxia)</subject><subject>Nutrition. Photosynthesis. Respiration. Metabolism</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>Phylogeny</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plastids</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Proteomics - statistics &amp; numerical data</subject><subject>Research Design - statistics &amp; numerical data</subject><subject>Zea mays - genetics</subject><subject>Zea mays - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0D1PwzAQBmALgWgpjGwIZYEt5fyR2B5LxZdUBAPMkeM4EJTExk6H8usxSkTl4ay7Ryf7RegcwxJjYDfOLTHQJVACQA_QHGeUpCRj4hDNY4ekIIScoZMQvgAAU8yO0QwzmeeE5XPEVsmrt4OxXaOTVa_aXWhCYuvkWTU_Jll_ttZb16owJLeN_TC9ifNTdFSrNpizqS7Q-_3d2_ox3bw8PK1Xm1QzgYeUUc0llwaLykAuOPBc0VISzTEzJc8qKZkEyanCZc1VBVrqutZZSVT8RCXoAl2Pe52331sThqJrgjZtq3pjt6EQgDMRT4TpCLW3IXhTF843nfK7AkPxF1PhXLzSYowp-stp8bbsTLXXUy4RXE1ABa3a2qteN2HvYr5C5Di6i9F9hcH6_zkjIr6M018Jv3eP</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>LONOSKY, Patricia M</creator><creator>XIAOSI ZHANG</creator><creator>HONAVAR, Vasant G</creator><creator>DOBBS, Drena L</creator><creator>AIGEN FU</creator><creator>RODERMEL, Steve R</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20040201</creationdate><title>A Proteomic Analysis of Maize Chloroplast Biogenesis</title><author>LONOSKY, Patricia M ; XIAOSI ZHANG ; HONAVAR, Vasant G ; DOBBS, Drena L ; AIGEN FU ; RODERMEL, Steve R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-43c7979e18de0687076a3b92c714eb75d99490973a1bf7ad0c9cffc5b2a532d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Chloroplasts</topic><topic>Chloroplasts - genetics</topic><topic>Chloroplasts - metabolism</topic><topic>Computer software</topic><topic>Corn</topic><topic>Economic plant physiology</topic><topic>Electrophoresis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Profiling - statistics &amp; numerical data</topic><topic>Genes. Genome</topic><topic>Greening</topic><topic>Metabolism</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Net assimilation, photosynthesis, carbon metabolism. Photorespiration, respiration, fermentation (anoxia, hypoxia)</topic><topic>Nutrition. Photosynthesis. Respiration. Metabolism</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>Phylogeny</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plastids</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Proteomics - statistics &amp; numerical data</topic><topic>Research Design - statistics &amp; numerical data</topic><topic>Zea mays - genetics</topic><topic>Zea mays - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LONOSKY, Patricia M</creatorcontrib><creatorcontrib>XIAOSI ZHANG</creatorcontrib><creatorcontrib>HONAVAR, Vasant G</creatorcontrib><creatorcontrib>DOBBS, Drena L</creatorcontrib><creatorcontrib>AIGEN FU</creatorcontrib><creatorcontrib>RODERMEL, Steve R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LONOSKY, Patricia M</au><au>XIAOSI ZHANG</au><au>HONAVAR, Vasant G</au><au>DOBBS, Drena L</au><au>AIGEN FU</au><au>RODERMEL, Steve R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Proteomic Analysis of Maize Chloroplast Biogenesis</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-02-01</date><risdate>2004</risdate><volume>134</volume><issue>2</issue><spage>560</spage><epage>574</epage><pages>560-574</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Proteomics studies to explore global patterns of protein expression in plant and green algal systems have proliferated within the past few years. Although most of these studies have involved mapping of the proteomes of various organs, tissues, cells, or organelles, comparative proteomics experiments have also led to the identification of proteins that change in abundance in various developmental or physiological contexts. Despite the growing use of proteomics in plant studies, questions of reproducibility have not generally been addressed, nor have quantitative methods been widely used, for example, to identify protein expression classes. In this report, we use the de-etiolation ("greening") of maize (Zea mays) chloroplasts as a model system to explore these questions, and we outline a reproducible protocol to identify changes in the plastid proteome that occur during the greening process using techniques of two-dimensional gel electrophoresis and mass spectrometry. We also evaluate hierarchical and nonhierarchical statistical methods to analyze the patterns of expression of 526 "high-quality," unique spots on the two-dimensional gels. We conclude that Adaptive Resonance Theory 2-a nonhierarchical, neural clustering technique that has not been previously applied to gene expression data-is a powerful technique for discriminating protein expression classes during greening. Our experiments provide a foundation for the use of proteomics in the design of experiments to address fundamental questions in plant physiology and molecular biology.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>14966246</pmid><doi>10.1104/pp.103.032003</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2004-02, Vol.134 (2), p.560-574
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_80158585
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Agronomy. Soil science and plant productions
Bioinformatics
Biological and medical sciences
Chloroplasts
Chloroplasts - genetics
Chloroplasts - metabolism
Computer software
Corn
Economic plant physiology
Electrophoresis
Fundamental and applied biological sciences. Psychology
Gels
Gene Expression Profiling - methods
Gene Expression Profiling - statistics & numerical data
Genes. Genome
Greening
Metabolism
Molecular and cellular biology
Molecular genetics
Net assimilation, photosynthesis, carbon metabolism. Photorespiration, respiration, fermentation (anoxia, hypoxia)
Nutrition. Photosynthesis. Respiration. Metabolism
Photosynthesis, respiration. Anabolism, catabolism
Phylogeny
Plant physiology and development
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Plastids
Proteomes
Proteomics
Proteomics - methods
Proteomics - statistics & numerical data
Research Design - statistics & numerical data
Zea mays - genetics
Zea mays - metabolism
title A Proteomic Analysis of Maize Chloroplast Biogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Proteomic%20Analysis%20of%20Maize%20Chloroplast%20Biogenesis&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=LONOSKY,%20Patricia%20M&rft.date=2004-02-01&rft.volume=134&rft.issue=2&rft.spage=560&rft.epage=574&rft.pages=560-574&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.103.032003&rft_dat=%3Cjstor_proqu%3E4281587%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80158585&rft_id=info:pmid/14966246&rft_jstor_id=4281587&rfr_iscdi=true