Activity-Dependent Dynamics of Coexisting Brain-Derived Neurotrophic Factor, Pro-Opiomelanocortin and α-Melanophore-Stimulating Hormone in Melanotrope Cells of Xenopus laevis
Brain‐derived neurotrophic factor (BDNF) is involved as an autocrine factor in the regulation of the secretory activity of the neuroendocrine pituitary melanotrope cells of Xenopus laevis. We studied the subcellular distribution of BDNF in Xenopus melanotropes using a combination of high‐pressure fr...
Gespeichert in:
Veröffentlicht in: | Journal of neuroendocrinology 2004-01, Vol.16 (1), p.19-25 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | Journal of neuroendocrinology |
container_volume | 16 |
creator | Wang, L. C. Meijer, H. K. Humbel, B. M. Jenks, B. G. Roubos, E. W. |
description | Brain‐derived neurotrophic factor (BDNF) is involved as an autocrine factor in the regulation of the secretory activity of the neuroendocrine pituitary melanotrope cells of Xenopus laevis. We studied the subcellular distribution of BDNF in Xenopus melanotropes using a combination of high‐pressure freezing, cryosubstitution and immunoelectron microscopy. Presence of BDNF, pro‐opiomelanocortin (POMC) and α‐melanophore‐stimulating hormone (αMSH) within melanotrope secretory granules was studied by triple‐labelling immunoelectron microscopy. In addition, intracellular processing of BDNF was investigated by quantifying the number of immunogold particles in different stages of secretory granule maturation, in animals adapted to black or white background light conditions. The high‐pressure freezing technique provides excellent preservation of both cellular ultrastructure and antigenicity. BDNF coexists with POMC and αMSH within secretory granules. BDNF‐immunoreactivity increases along the secretory granule maturation axis (i.e. from electron‐dense, via moderately electron‐dense, to electron‐lucent secretory granules). Immature, low immunoreactive, electron‐dense secretory granules are assumed to contain mainly or even exclusively proBDNF. Strongly immunoreactive electron‐lucent secretory granules represent the mature granule stage in which proBDNF has been processed to mature BDNF. Furthermore, in moderately electron‐dense secretory granules, immunoreactivity is markedly (+79%) higher in black‐adapted than in white‐adapted animals, indicating that stimulation of melanotrope cell activity by the black background condition speeds up processing of BDNF from its precursor in this granule stage. It is concluded that, in the Xenopus melanotrope, BDNF biosynthesis and processing occur along the secretory granule maturation axis, together with that of POMC‐derived αMSH, and that the environmental light condition not only controls the biosynthesis and secretion of BDNF and of POMC end‐products, but also regulates the rate of their intragranular processing. |
doi_str_mv | 10.1111/j.1365-2826.2004.01110.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80153796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80153796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4640-88fa67eff68ceb820af1a787b0b827d41c9925ff1cfcd1f458b23ac087a38a623</originalsourceid><addsrcrecordid>eNqNks2O0zAURiMEYsrAKyBvYEWKHSeOs2Axk05b0NBBAgQ7y3WuGZckDnZS2qdCvAjPhNNWM0vwxn_nXF_pcxQhgqckjNebKaEsixOesGmCcTrF4RRPdw-iyd3Fw2iCi4zGnBTpWfTE-w3GJM8ofhydkbRgCc7JJPp1oXqzNf0-nkEHbQVtj2b7VjZGeWQ1Ki3sjO9N-w1dOmnagDmzhQqtYHC2d7a7NQrNpeqte4U-OBvfdMY2UMvWKuuCiGRboT-_4_eHs-7WOog_9qYZankou7SusS2gQB6RsSigEur60MFXCNbgUS1ha_zT6JGWtYdnp_k8-jy_-lQu4-ubxdvy4jpWKUtxzLmWLAetGVew5gmWmsic52scNnmVElUUSaY1UVpVRKcZXydUKsxzSblkCT2PXh7rds7-GMD3ojFehZ5kC3bwgmOS0bxg_wRJkRUJPYD8CCpnvXegRedMI91eECzGVMVGjOGJMTwxpioOqYpdUJ-f3hjWDVT34inGALw4AdIrWWsnW2X8PZdlCWMFDtybI_fT1LD_7wbEu9XVuAp-fPTDl4DdnS_dd8Fymmfiy2ohSLlczOmSixn9C16r0SU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19592396</pqid></control><display><type>article</type><title>Activity-Dependent Dynamics of Coexisting Brain-Derived Neurotrophic Factor, Pro-Opiomelanocortin and α-Melanophore-Stimulating Hormone in Melanotrope Cells of Xenopus laevis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, L. C. ; Meijer, H. K. ; Humbel, B. M. ; Jenks, B. G. ; Roubos, E. W.</creator><creatorcontrib>Wang, L. C. ; Meijer, H. K. ; Humbel, B. M. ; Jenks, B. G. ; Roubos, E. W.</creatorcontrib><description>Brain‐derived neurotrophic factor (BDNF) is involved as an autocrine factor in the regulation of the secretory activity of the neuroendocrine pituitary melanotrope cells of Xenopus laevis. We studied the subcellular distribution of BDNF in Xenopus melanotropes using a combination of high‐pressure freezing, cryosubstitution and immunoelectron microscopy. Presence of BDNF, pro‐opiomelanocortin (POMC) and α‐melanophore‐stimulating hormone (αMSH) within melanotrope secretory granules was studied by triple‐labelling immunoelectron microscopy. In addition, intracellular processing of BDNF was investigated by quantifying the number of immunogold particles in different stages of secretory granule maturation, in animals adapted to black or white background light conditions. The high‐pressure freezing technique provides excellent preservation of both cellular ultrastructure and antigenicity. BDNF coexists with POMC and αMSH within secretory granules. BDNF‐immunoreactivity increases along the secretory granule maturation axis (i.e. from electron‐dense, via moderately electron‐dense, to electron‐lucent secretory granules). Immature, low immunoreactive, electron‐dense secretory granules are assumed to contain mainly or even exclusively proBDNF. Strongly immunoreactive electron‐lucent secretory granules represent the mature granule stage in which proBDNF has been processed to mature BDNF. Furthermore, in moderately electron‐dense secretory granules, immunoreactivity is markedly (+79%) higher in black‐adapted than in white‐adapted animals, indicating that stimulation of melanotrope cell activity by the black background condition speeds up processing of BDNF from its precursor in this granule stage. It is concluded that, in the Xenopus melanotrope, BDNF biosynthesis and processing occur along the secretory granule maturation axis, together with that of POMC‐derived αMSH, and that the environmental light condition not only controls the biosynthesis and secretion of BDNF and of POMC end‐products, but also regulates the rate of their intragranular processing.</description><identifier>ISSN: 0953-8194</identifier><identifier>EISSN: 1365-2826</identifier><identifier>DOI: 10.1111/j.1365-2826.2004.01110.x</identifier><identifier>PMID: 14962071</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>alpha-MSH - metabolism ; Animals ; Biological and medical sciences ; Brain-Derived Neurotrophic Factor - metabolism ; Brain-Derived Neurotrophic Factor - ultrastructure ; cryosubstitution ; Freeze Fracturing ; Fundamental and applied biological sciences. Psychology ; high-pressure freezing ; Immunohistochemistry ; Pituitary Gland - metabolism ; Pituitary Gland - ultrastructure ; Pro-Opiomelanocortin - metabolism ; Pro-Opiomelanocortin - ultrastructure ; Protein Processing, Post-Translational ; Secretory Vesicles - metabolism ; Secretory Vesicles - ultrastructure ; Tissue Distribution ; triple-labelling quantitative immunoelectron microscopy ; Vertebrates: endocrinology ; Xenopus laevis ; Xenopus laevis - anatomy & histology ; Xenopus laevis - metabolism</subject><ispartof>Journal of neuroendocrinology, 2004-01, Vol.16 (1), p.19-25</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4640-88fa67eff68ceb820af1a787b0b827d41c9925ff1cfcd1f458b23ac087a38a623</citedby><cites>FETCH-LOGICAL-c4640-88fa67eff68ceb820af1a787b0b827d41c9925ff1cfcd1f458b23ac087a38a623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2826.2004.01110.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2826.2004.01110.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4009,27902,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15526690$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14962071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, L. C.</creatorcontrib><creatorcontrib>Meijer, H. K.</creatorcontrib><creatorcontrib>Humbel, B. M.</creatorcontrib><creatorcontrib>Jenks, B. G.</creatorcontrib><creatorcontrib>Roubos, E. W.</creatorcontrib><title>Activity-Dependent Dynamics of Coexisting Brain-Derived Neurotrophic Factor, Pro-Opiomelanocortin and α-Melanophore-Stimulating Hormone in Melanotrope Cells of Xenopus laevis</title><title>Journal of neuroendocrinology</title><addtitle>J Neuroendocrinol</addtitle><description>Brain‐derived neurotrophic factor (BDNF) is involved as an autocrine factor in the regulation of the secretory activity of the neuroendocrine pituitary melanotrope cells of Xenopus laevis. We studied the subcellular distribution of BDNF in Xenopus melanotropes using a combination of high‐pressure freezing, cryosubstitution and immunoelectron microscopy. Presence of BDNF, pro‐opiomelanocortin (POMC) and α‐melanophore‐stimulating hormone (αMSH) within melanotrope secretory granules was studied by triple‐labelling immunoelectron microscopy. In addition, intracellular processing of BDNF was investigated by quantifying the number of immunogold particles in different stages of secretory granule maturation, in animals adapted to black or white background light conditions. The high‐pressure freezing technique provides excellent preservation of both cellular ultrastructure and antigenicity. BDNF coexists with POMC and αMSH within secretory granules. BDNF‐immunoreactivity increases along the secretory granule maturation axis (i.e. from electron‐dense, via moderately electron‐dense, to electron‐lucent secretory granules). Immature, low immunoreactive, electron‐dense secretory granules are assumed to contain mainly or even exclusively proBDNF. Strongly immunoreactive electron‐lucent secretory granules represent the mature granule stage in which proBDNF has been processed to mature BDNF. Furthermore, in moderately electron‐dense secretory granules, immunoreactivity is markedly (+79%) higher in black‐adapted than in white‐adapted animals, indicating that stimulation of melanotrope cell activity by the black background condition speeds up processing of BDNF from its precursor in this granule stage. It is concluded that, in the Xenopus melanotrope, BDNF biosynthesis and processing occur along the secretory granule maturation axis, together with that of POMC‐derived αMSH, and that the environmental light condition not only controls the biosynthesis and secretion of BDNF and of POMC end‐products, but also regulates the rate of their intragranular processing.</description><subject>alpha-MSH - metabolism</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>Brain-Derived Neurotrophic Factor - ultrastructure</subject><subject>cryosubstitution</subject><subject>Freeze Fracturing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>high-pressure freezing</subject><subject>Immunohistochemistry</subject><subject>Pituitary Gland - metabolism</subject><subject>Pituitary Gland - ultrastructure</subject><subject>Pro-Opiomelanocortin - metabolism</subject><subject>Pro-Opiomelanocortin - ultrastructure</subject><subject>Protein Processing, Post-Translational</subject><subject>Secretory Vesicles - metabolism</subject><subject>Secretory Vesicles - ultrastructure</subject><subject>Tissue Distribution</subject><subject>triple-labelling quantitative immunoelectron microscopy</subject><subject>Vertebrates: endocrinology</subject><subject>Xenopus laevis</subject><subject>Xenopus laevis - anatomy & histology</subject><subject>Xenopus laevis - metabolism</subject><issn>0953-8194</issn><issn>1365-2826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks2O0zAURiMEYsrAKyBvYEWKHSeOs2Axk05b0NBBAgQ7y3WuGZckDnZS2qdCvAjPhNNWM0vwxn_nXF_pcxQhgqckjNebKaEsixOesGmCcTrF4RRPdw-iyd3Fw2iCi4zGnBTpWfTE-w3GJM8ofhydkbRgCc7JJPp1oXqzNf0-nkEHbQVtj2b7VjZGeWQ1Ki3sjO9N-w1dOmnagDmzhQqtYHC2d7a7NQrNpeqte4U-OBvfdMY2UMvWKuuCiGRboT-_4_eHs-7WOog_9qYZankou7SusS2gQB6RsSigEur60MFXCNbgUS1ha_zT6JGWtYdnp_k8-jy_-lQu4-ubxdvy4jpWKUtxzLmWLAetGVew5gmWmsic52scNnmVElUUSaY1UVpVRKcZXydUKsxzSblkCT2PXh7rds7-GMD3ojFehZ5kC3bwgmOS0bxg_wRJkRUJPYD8CCpnvXegRedMI91eECzGVMVGjOGJMTwxpioOqYpdUJ-f3hjWDVT34inGALw4AdIrWWsnW2X8PZdlCWMFDtybI_fT1LD_7wbEu9XVuAp-fPTDl4DdnS_dd8Fymmfiy2ohSLlczOmSixn9C16r0SU</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Wang, L. C.</creator><creator>Meijer, H. K.</creator><creator>Humbel, B. M.</creator><creator>Jenks, B. G.</creator><creator>Roubos, E. W.</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>200401</creationdate><title>Activity-Dependent Dynamics of Coexisting Brain-Derived Neurotrophic Factor, Pro-Opiomelanocortin and α-Melanophore-Stimulating Hormone in Melanotrope Cells of Xenopus laevis</title><author>Wang, L. C. ; Meijer, H. K. ; Humbel, B. M. ; Jenks, B. G. ; Roubos, E. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4640-88fa67eff68ceb820af1a787b0b827d41c9925ff1cfcd1f458b23ac087a38a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>alpha-MSH - metabolism</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>Brain-Derived Neurotrophic Factor - ultrastructure</topic><topic>cryosubstitution</topic><topic>Freeze Fracturing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>high-pressure freezing</topic><topic>Immunohistochemistry</topic><topic>Pituitary Gland - metabolism</topic><topic>Pituitary Gland - ultrastructure</topic><topic>Pro-Opiomelanocortin - metabolism</topic><topic>Pro-Opiomelanocortin - ultrastructure</topic><topic>Protein Processing, Post-Translational</topic><topic>Secretory Vesicles - metabolism</topic><topic>Secretory Vesicles - ultrastructure</topic><topic>Tissue Distribution</topic><topic>triple-labelling quantitative immunoelectron microscopy</topic><topic>Vertebrates: endocrinology</topic><topic>Xenopus laevis</topic><topic>Xenopus laevis - anatomy & histology</topic><topic>Xenopus laevis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, L. C.</creatorcontrib><creatorcontrib>Meijer, H. K.</creatorcontrib><creatorcontrib>Humbel, B. M.</creatorcontrib><creatorcontrib>Jenks, B. G.</creatorcontrib><creatorcontrib>Roubos, E. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroendocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, L. C.</au><au>Meijer, H. K.</au><au>Humbel, B. M.</au><au>Jenks, B. G.</au><au>Roubos, E. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity-Dependent Dynamics of Coexisting Brain-Derived Neurotrophic Factor, Pro-Opiomelanocortin and α-Melanophore-Stimulating Hormone in Melanotrope Cells of Xenopus laevis</atitle><jtitle>Journal of neuroendocrinology</jtitle><addtitle>J Neuroendocrinol</addtitle><date>2004-01</date><risdate>2004</risdate><volume>16</volume><issue>1</issue><spage>19</spage><epage>25</epage><pages>19-25</pages><issn>0953-8194</issn><eissn>1365-2826</eissn><abstract>Brain‐derived neurotrophic factor (BDNF) is involved as an autocrine factor in the regulation of the secretory activity of the neuroendocrine pituitary melanotrope cells of Xenopus laevis. We studied the subcellular distribution of BDNF in Xenopus melanotropes using a combination of high‐pressure freezing, cryosubstitution and immunoelectron microscopy. Presence of BDNF, pro‐opiomelanocortin (POMC) and α‐melanophore‐stimulating hormone (αMSH) within melanotrope secretory granules was studied by triple‐labelling immunoelectron microscopy. In addition, intracellular processing of BDNF was investigated by quantifying the number of immunogold particles in different stages of secretory granule maturation, in animals adapted to black or white background light conditions. The high‐pressure freezing technique provides excellent preservation of both cellular ultrastructure and antigenicity. BDNF coexists with POMC and αMSH within secretory granules. BDNF‐immunoreactivity increases along the secretory granule maturation axis (i.e. from electron‐dense, via moderately electron‐dense, to electron‐lucent secretory granules). Immature, low immunoreactive, electron‐dense secretory granules are assumed to contain mainly or even exclusively proBDNF. Strongly immunoreactive electron‐lucent secretory granules represent the mature granule stage in which proBDNF has been processed to mature BDNF. Furthermore, in moderately electron‐dense secretory granules, immunoreactivity is markedly (+79%) higher in black‐adapted than in white‐adapted animals, indicating that stimulation of melanotrope cell activity by the black background condition speeds up processing of BDNF from its precursor in this granule stage. It is concluded that, in the Xenopus melanotrope, BDNF biosynthesis and processing occur along the secretory granule maturation axis, together with that of POMC‐derived αMSH, and that the environmental light condition not only controls the biosynthesis and secretion of BDNF and of POMC end‐products, but also regulates the rate of their intragranular processing.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>14962071</pmid><doi>10.1111/j.1365-2826.2004.01110.x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8194 |
ispartof | Journal of neuroendocrinology, 2004-01, Vol.16 (1), p.19-25 |
issn | 0953-8194 1365-2826 |
language | eng |
recordid | cdi_proquest_miscellaneous_80153796 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | alpha-MSH - metabolism Animals Biological and medical sciences Brain-Derived Neurotrophic Factor - metabolism Brain-Derived Neurotrophic Factor - ultrastructure cryosubstitution Freeze Fracturing Fundamental and applied biological sciences. Psychology high-pressure freezing Immunohistochemistry Pituitary Gland - metabolism Pituitary Gland - ultrastructure Pro-Opiomelanocortin - metabolism Pro-Opiomelanocortin - ultrastructure Protein Processing, Post-Translational Secretory Vesicles - metabolism Secretory Vesicles - ultrastructure Tissue Distribution triple-labelling quantitative immunoelectron microscopy Vertebrates: endocrinology Xenopus laevis Xenopus laevis - anatomy & histology Xenopus laevis - metabolism |
title | Activity-Dependent Dynamics of Coexisting Brain-Derived Neurotrophic Factor, Pro-Opiomelanocortin and α-Melanophore-Stimulating Hormone in Melanotrope Cells of Xenopus laevis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity-Dependent%20Dynamics%20of%20Coexisting%20Brain-Derived%20Neurotrophic%20Factor,%20Pro-Opiomelanocortin%20and%20%CE%B1-Melanophore-Stimulating%20Hormone%20in%20Melanotrope%20Cells%20of%20Xenopus%20laevis&rft.jtitle=Journal%20of%20neuroendocrinology&rft.au=Wang,%20L.%20C.&rft.date=2004-01&rft.volume=16&rft.issue=1&rft.spage=19&rft.epage=25&rft.pages=19-25&rft.issn=0953-8194&rft.eissn=1365-2826&rft_id=info:doi/10.1111/j.1365-2826.2004.01110.x&rft_dat=%3Cproquest_cross%3E80153796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19592396&rft_id=info:pmid/14962071&rfr_iscdi=true |