Activity-Dependent Dynamics of Coexisting Brain-Derived Neurotrophic Factor, Pro-Opiomelanocortin and α-Melanophore-Stimulating Hormone in Melanotrope Cells of Xenopus laevis

Brain‐derived neurotrophic factor (BDNF) is involved as an autocrine factor in the regulation of the secretory activity of the neuroendocrine pituitary melanotrope cells of Xenopus laevis. We studied the subcellular distribution of BDNF in Xenopus melanotropes using a combination of high‐pressure fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroendocrinology 2004-01, Vol.16 (1), p.19-25
Hauptverfasser: Wang, L. C., Meijer, H. K., Humbel, B. M., Jenks, B. G., Roubos, E. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 19
container_title Journal of neuroendocrinology
container_volume 16
creator Wang, L. C.
Meijer, H. K.
Humbel, B. M.
Jenks, B. G.
Roubos, E. W.
description Brain‐derived neurotrophic factor (BDNF) is involved as an autocrine factor in the regulation of the secretory activity of the neuroendocrine pituitary melanotrope cells of Xenopus laevis. We studied the subcellular distribution of BDNF in Xenopus melanotropes using a combination of high‐pressure freezing, cryosubstitution and immunoelectron microscopy. Presence of BDNF, pro‐opiomelanocortin (POMC) and α‐melanophore‐stimulating hormone (αMSH) within melanotrope secretory granules was studied by triple‐labelling immunoelectron microscopy. In addition, intracellular processing of BDNF was investigated by quantifying the number of immunogold particles in different stages of secretory granule maturation, in animals adapted to black or white background light conditions. The high‐pressure freezing technique provides excellent preservation of both cellular ultrastructure and antigenicity. BDNF coexists with POMC and αMSH within secretory granules. BDNF‐immunoreactivity increases along the secretory granule maturation axis (i.e. from electron‐dense, via moderately electron‐dense, to electron‐lucent secretory granules). Immature, low immunoreactive, electron‐dense secretory granules are assumed to contain mainly or even exclusively proBDNF. Strongly immunoreactive electron‐lucent secretory granules represent the mature granule stage in which proBDNF has been processed to mature BDNF. Furthermore, in moderately electron‐dense secretory granules, immunoreactivity is markedly (+79%) higher in black‐adapted than in white‐adapted animals, indicating that stimulation of melanotrope cell activity by the black background condition speeds up processing of BDNF from its precursor in this granule stage. It is concluded that, in the Xenopus melanotrope, BDNF biosynthesis and processing occur along the secretory granule maturation axis, together with that of POMC‐derived αMSH, and that the environmental light condition not only controls the biosynthesis and secretion of BDNF and of POMC end‐products, but also regulates the rate of their intragranular processing.
doi_str_mv 10.1111/j.1365-2826.2004.01110.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80153796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80153796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4640-88fa67eff68ceb820af1a787b0b827d41c9925ff1cfcd1f458b23ac087a38a623</originalsourceid><addsrcrecordid>eNqNks2O0zAURiMEYsrAKyBvYEWKHSeOs2Axk05b0NBBAgQ7y3WuGZckDnZS2qdCvAjPhNNWM0vwxn_nXF_pcxQhgqckjNebKaEsixOesGmCcTrF4RRPdw-iyd3Fw2iCi4zGnBTpWfTE-w3GJM8ofhydkbRgCc7JJPp1oXqzNf0-nkEHbQVtj2b7VjZGeWQ1Ki3sjO9N-w1dOmnagDmzhQqtYHC2d7a7NQrNpeqte4U-OBvfdMY2UMvWKuuCiGRboT-_4_eHs-7WOog_9qYZankou7SusS2gQB6RsSigEur60MFXCNbgUS1ha_zT6JGWtYdnp_k8-jy_-lQu4-ubxdvy4jpWKUtxzLmWLAetGVew5gmWmsic52scNnmVElUUSaY1UVpVRKcZXydUKsxzSblkCT2PXh7rds7-GMD3ojFehZ5kC3bwgmOS0bxg_wRJkRUJPYD8CCpnvXegRedMI91eECzGVMVGjOGJMTwxpioOqYpdUJ-f3hjWDVT34inGALw4AdIrWWsnW2X8PZdlCWMFDtybI_fT1LD_7wbEu9XVuAp-fPTDl4DdnS_dd8Fymmfiy2ohSLlczOmSixn9C16r0SU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19592396</pqid></control><display><type>article</type><title>Activity-Dependent Dynamics of Coexisting Brain-Derived Neurotrophic Factor, Pro-Opiomelanocortin and α-Melanophore-Stimulating Hormone in Melanotrope Cells of Xenopus laevis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, L. C. ; Meijer, H. K. ; Humbel, B. M. ; Jenks, B. G. ; Roubos, E. W.</creator><creatorcontrib>Wang, L. C. ; Meijer, H. K. ; Humbel, B. M. ; Jenks, B. G. ; Roubos, E. W.</creatorcontrib><description>Brain‐derived neurotrophic factor (BDNF) is involved as an autocrine factor in the regulation of the secretory activity of the neuroendocrine pituitary melanotrope cells of Xenopus laevis. We studied the subcellular distribution of BDNF in Xenopus melanotropes using a combination of high‐pressure freezing, cryosubstitution and immunoelectron microscopy. Presence of BDNF, pro‐opiomelanocortin (POMC) and α‐melanophore‐stimulating hormone (αMSH) within melanotrope secretory granules was studied by triple‐labelling immunoelectron microscopy. In addition, intracellular processing of BDNF was investigated by quantifying the number of immunogold particles in different stages of secretory granule maturation, in animals adapted to black or white background light conditions. The high‐pressure freezing technique provides excellent preservation of both cellular ultrastructure and antigenicity. BDNF coexists with POMC and αMSH within secretory granules. BDNF‐immunoreactivity increases along the secretory granule maturation axis (i.e. from electron‐dense, via moderately electron‐dense, to electron‐lucent secretory granules). Immature, low immunoreactive, electron‐dense secretory granules are assumed to contain mainly or even exclusively proBDNF. Strongly immunoreactive electron‐lucent secretory granules represent the mature granule stage in which proBDNF has been processed to mature BDNF. Furthermore, in moderately electron‐dense secretory granules, immunoreactivity is markedly (+79%) higher in black‐adapted than in white‐adapted animals, indicating that stimulation of melanotrope cell activity by the black background condition speeds up processing of BDNF from its precursor in this granule stage. It is concluded that, in the Xenopus melanotrope, BDNF biosynthesis and processing occur along the secretory granule maturation axis, together with that of POMC‐derived αMSH, and that the environmental light condition not only controls the biosynthesis and secretion of BDNF and of POMC end‐products, but also regulates the rate of their intragranular processing.</description><identifier>ISSN: 0953-8194</identifier><identifier>EISSN: 1365-2826</identifier><identifier>DOI: 10.1111/j.1365-2826.2004.01110.x</identifier><identifier>PMID: 14962071</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>alpha-MSH - metabolism ; Animals ; Biological and medical sciences ; Brain-Derived Neurotrophic Factor - metabolism ; Brain-Derived Neurotrophic Factor - ultrastructure ; cryosubstitution ; Freeze Fracturing ; Fundamental and applied biological sciences. Psychology ; high-pressure freezing ; Immunohistochemistry ; Pituitary Gland - metabolism ; Pituitary Gland - ultrastructure ; Pro-Opiomelanocortin - metabolism ; Pro-Opiomelanocortin - ultrastructure ; Protein Processing, Post-Translational ; Secretory Vesicles - metabolism ; Secretory Vesicles - ultrastructure ; Tissue Distribution ; triple-labelling quantitative immunoelectron microscopy ; Vertebrates: endocrinology ; Xenopus laevis ; Xenopus laevis - anatomy &amp; histology ; Xenopus laevis - metabolism</subject><ispartof>Journal of neuroendocrinology, 2004-01, Vol.16 (1), p.19-25</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4640-88fa67eff68ceb820af1a787b0b827d41c9925ff1cfcd1f458b23ac087a38a623</citedby><cites>FETCH-LOGICAL-c4640-88fa67eff68ceb820af1a787b0b827d41c9925ff1cfcd1f458b23ac087a38a623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2826.2004.01110.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2826.2004.01110.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4009,27902,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15526690$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14962071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, L. C.</creatorcontrib><creatorcontrib>Meijer, H. K.</creatorcontrib><creatorcontrib>Humbel, B. M.</creatorcontrib><creatorcontrib>Jenks, B. G.</creatorcontrib><creatorcontrib>Roubos, E. W.</creatorcontrib><title>Activity-Dependent Dynamics of Coexisting Brain-Derived Neurotrophic Factor, Pro-Opiomelanocortin and α-Melanophore-Stimulating Hormone in Melanotrope Cells of Xenopus laevis</title><title>Journal of neuroendocrinology</title><addtitle>J Neuroendocrinol</addtitle><description>Brain‐derived neurotrophic factor (BDNF) is involved as an autocrine factor in the regulation of the secretory activity of the neuroendocrine pituitary melanotrope cells of Xenopus laevis. We studied the subcellular distribution of BDNF in Xenopus melanotropes using a combination of high‐pressure freezing, cryosubstitution and immunoelectron microscopy. Presence of BDNF, pro‐opiomelanocortin (POMC) and α‐melanophore‐stimulating hormone (αMSH) within melanotrope secretory granules was studied by triple‐labelling immunoelectron microscopy. In addition, intracellular processing of BDNF was investigated by quantifying the number of immunogold particles in different stages of secretory granule maturation, in animals adapted to black or white background light conditions. The high‐pressure freezing technique provides excellent preservation of both cellular ultrastructure and antigenicity. BDNF coexists with POMC and αMSH within secretory granules. BDNF‐immunoreactivity increases along the secretory granule maturation axis (i.e. from electron‐dense, via moderately electron‐dense, to electron‐lucent secretory granules). Immature, low immunoreactive, electron‐dense secretory granules are assumed to contain mainly or even exclusively proBDNF. Strongly immunoreactive electron‐lucent secretory granules represent the mature granule stage in which proBDNF has been processed to mature BDNF. Furthermore, in moderately electron‐dense secretory granules, immunoreactivity is markedly (+79%) higher in black‐adapted than in white‐adapted animals, indicating that stimulation of melanotrope cell activity by the black background condition speeds up processing of BDNF from its precursor in this granule stage. It is concluded that, in the Xenopus melanotrope, BDNF biosynthesis and processing occur along the secretory granule maturation axis, together with that of POMC‐derived αMSH, and that the environmental light condition not only controls the biosynthesis and secretion of BDNF and of POMC end‐products, but also regulates the rate of their intragranular processing.</description><subject>alpha-MSH - metabolism</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>Brain-Derived Neurotrophic Factor - ultrastructure</subject><subject>cryosubstitution</subject><subject>Freeze Fracturing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>high-pressure freezing</subject><subject>Immunohistochemistry</subject><subject>Pituitary Gland - metabolism</subject><subject>Pituitary Gland - ultrastructure</subject><subject>Pro-Opiomelanocortin - metabolism</subject><subject>Pro-Opiomelanocortin - ultrastructure</subject><subject>Protein Processing, Post-Translational</subject><subject>Secretory Vesicles - metabolism</subject><subject>Secretory Vesicles - ultrastructure</subject><subject>Tissue Distribution</subject><subject>triple-labelling quantitative immunoelectron microscopy</subject><subject>Vertebrates: endocrinology</subject><subject>Xenopus laevis</subject><subject>Xenopus laevis - anatomy &amp; histology</subject><subject>Xenopus laevis - metabolism</subject><issn>0953-8194</issn><issn>1365-2826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks2O0zAURiMEYsrAKyBvYEWKHSeOs2Axk05b0NBBAgQ7y3WuGZckDnZS2qdCvAjPhNNWM0vwxn_nXF_pcxQhgqckjNebKaEsixOesGmCcTrF4RRPdw-iyd3Fw2iCi4zGnBTpWfTE-w3GJM8ofhydkbRgCc7JJPp1oXqzNf0-nkEHbQVtj2b7VjZGeWQ1Ki3sjO9N-w1dOmnagDmzhQqtYHC2d7a7NQrNpeqte4U-OBvfdMY2UMvWKuuCiGRboT-_4_eHs-7WOog_9qYZankou7SusS2gQB6RsSigEur60MFXCNbgUS1ha_zT6JGWtYdnp_k8-jy_-lQu4-ubxdvy4jpWKUtxzLmWLAetGVew5gmWmsic52scNnmVElUUSaY1UVpVRKcZXydUKsxzSblkCT2PXh7rds7-GMD3ojFehZ5kC3bwgmOS0bxg_wRJkRUJPYD8CCpnvXegRedMI91eECzGVMVGjOGJMTwxpioOqYpdUJ-f3hjWDVT34inGALw4AdIrWWsnW2X8PZdlCWMFDtybI_fT1LD_7wbEu9XVuAp-fPTDl4DdnS_dd8Fymmfiy2ohSLlczOmSixn9C16r0SU</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Wang, L. C.</creator><creator>Meijer, H. K.</creator><creator>Humbel, B. M.</creator><creator>Jenks, B. G.</creator><creator>Roubos, E. W.</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>200401</creationdate><title>Activity-Dependent Dynamics of Coexisting Brain-Derived Neurotrophic Factor, Pro-Opiomelanocortin and α-Melanophore-Stimulating Hormone in Melanotrope Cells of Xenopus laevis</title><author>Wang, L. C. ; Meijer, H. K. ; Humbel, B. M. ; Jenks, B. G. ; Roubos, E. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4640-88fa67eff68ceb820af1a787b0b827d41c9925ff1cfcd1f458b23ac087a38a623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>alpha-MSH - metabolism</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>Brain-Derived Neurotrophic Factor - ultrastructure</topic><topic>cryosubstitution</topic><topic>Freeze Fracturing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>high-pressure freezing</topic><topic>Immunohistochemistry</topic><topic>Pituitary Gland - metabolism</topic><topic>Pituitary Gland - ultrastructure</topic><topic>Pro-Opiomelanocortin - metabolism</topic><topic>Pro-Opiomelanocortin - ultrastructure</topic><topic>Protein Processing, Post-Translational</topic><topic>Secretory Vesicles - metabolism</topic><topic>Secretory Vesicles - ultrastructure</topic><topic>Tissue Distribution</topic><topic>triple-labelling quantitative immunoelectron microscopy</topic><topic>Vertebrates: endocrinology</topic><topic>Xenopus laevis</topic><topic>Xenopus laevis - anatomy &amp; histology</topic><topic>Xenopus laevis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, L. C.</creatorcontrib><creatorcontrib>Meijer, H. K.</creatorcontrib><creatorcontrib>Humbel, B. M.</creatorcontrib><creatorcontrib>Jenks, B. G.</creatorcontrib><creatorcontrib>Roubos, E. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroendocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, L. C.</au><au>Meijer, H. K.</au><au>Humbel, B. M.</au><au>Jenks, B. G.</au><au>Roubos, E. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity-Dependent Dynamics of Coexisting Brain-Derived Neurotrophic Factor, Pro-Opiomelanocortin and α-Melanophore-Stimulating Hormone in Melanotrope Cells of Xenopus laevis</atitle><jtitle>Journal of neuroendocrinology</jtitle><addtitle>J Neuroendocrinol</addtitle><date>2004-01</date><risdate>2004</risdate><volume>16</volume><issue>1</issue><spage>19</spage><epage>25</epage><pages>19-25</pages><issn>0953-8194</issn><eissn>1365-2826</eissn><abstract>Brain‐derived neurotrophic factor (BDNF) is involved as an autocrine factor in the regulation of the secretory activity of the neuroendocrine pituitary melanotrope cells of Xenopus laevis. We studied the subcellular distribution of BDNF in Xenopus melanotropes using a combination of high‐pressure freezing, cryosubstitution and immunoelectron microscopy. Presence of BDNF, pro‐opiomelanocortin (POMC) and α‐melanophore‐stimulating hormone (αMSH) within melanotrope secretory granules was studied by triple‐labelling immunoelectron microscopy. In addition, intracellular processing of BDNF was investigated by quantifying the number of immunogold particles in different stages of secretory granule maturation, in animals adapted to black or white background light conditions. The high‐pressure freezing technique provides excellent preservation of both cellular ultrastructure and antigenicity. BDNF coexists with POMC and αMSH within secretory granules. BDNF‐immunoreactivity increases along the secretory granule maturation axis (i.e. from electron‐dense, via moderately electron‐dense, to electron‐lucent secretory granules). Immature, low immunoreactive, electron‐dense secretory granules are assumed to contain mainly or even exclusively proBDNF. Strongly immunoreactive electron‐lucent secretory granules represent the mature granule stage in which proBDNF has been processed to mature BDNF. Furthermore, in moderately electron‐dense secretory granules, immunoreactivity is markedly (+79%) higher in black‐adapted than in white‐adapted animals, indicating that stimulation of melanotrope cell activity by the black background condition speeds up processing of BDNF from its precursor in this granule stage. It is concluded that, in the Xenopus melanotrope, BDNF biosynthesis and processing occur along the secretory granule maturation axis, together with that of POMC‐derived αMSH, and that the environmental light condition not only controls the biosynthesis and secretion of BDNF and of POMC end‐products, but also regulates the rate of their intragranular processing.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>14962071</pmid><doi>10.1111/j.1365-2826.2004.01110.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8194
ispartof Journal of neuroendocrinology, 2004-01, Vol.16 (1), p.19-25
issn 0953-8194
1365-2826
language eng
recordid cdi_proquest_miscellaneous_80153796
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects alpha-MSH - metabolism
Animals
Biological and medical sciences
Brain-Derived Neurotrophic Factor - metabolism
Brain-Derived Neurotrophic Factor - ultrastructure
cryosubstitution
Freeze Fracturing
Fundamental and applied biological sciences. Psychology
high-pressure freezing
Immunohistochemistry
Pituitary Gland - metabolism
Pituitary Gland - ultrastructure
Pro-Opiomelanocortin - metabolism
Pro-Opiomelanocortin - ultrastructure
Protein Processing, Post-Translational
Secretory Vesicles - metabolism
Secretory Vesicles - ultrastructure
Tissue Distribution
triple-labelling quantitative immunoelectron microscopy
Vertebrates: endocrinology
Xenopus laevis
Xenopus laevis - anatomy & histology
Xenopus laevis - metabolism
title Activity-Dependent Dynamics of Coexisting Brain-Derived Neurotrophic Factor, Pro-Opiomelanocortin and α-Melanophore-Stimulating Hormone in Melanotrope Cells of Xenopus laevis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T23%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity-Dependent%20Dynamics%20of%20Coexisting%20Brain-Derived%20Neurotrophic%20Factor,%20Pro-Opiomelanocortin%20and%20%CE%B1-Melanophore-Stimulating%20Hormone%20in%20Melanotrope%20Cells%20of%20Xenopus%20laevis&rft.jtitle=Journal%20of%20neuroendocrinology&rft.au=Wang,%20L.%20C.&rft.date=2004-01&rft.volume=16&rft.issue=1&rft.spage=19&rft.epage=25&rft.pages=19-25&rft.issn=0953-8194&rft.eissn=1365-2826&rft_id=info:doi/10.1111/j.1365-2826.2004.01110.x&rft_dat=%3Cproquest_cross%3E80153796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19592396&rft_id=info:pmid/14962071&rfr_iscdi=true