Precursor-Directed Biosynthesis of Novel Triketide Lactones
Precursor‐directed biosynthesis was used to produce different triketide lactones (R‐TKLs) in a fermentation process. Plasmids expressing engineered versions of the first subunit of 6‐deoxyerythronolide B synthase (DEBS1) fused to the terminal DEBS thioesterase (TE) were introduced into three differe...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2004, Vol.20 (1), p.122-127 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 1 |
container_start_page | 122 |
container_title | Biotechnology progress |
container_volume | 20 |
creator | Regentin, Rika Kennedy, Jonathan Wu, Nicholas Carney, John R. Licari, Peter Galazzo, Jorge Desai, Ruchir |
description | Precursor‐directed biosynthesis was used to produce different triketide lactones (R‐TKLs) in a fermentation process. Plasmids expressing engineered versions of the first subunit of 6‐deoxyerythronolide B synthase (DEBS1) fused to the terminal DEBS thioesterase (TE) were introduced into three different Streptomyces strains. The DEBS1 protein fused to TE had either an inactivated ketosynthase domain (KS1°) or a partial DEBS1 lacking module 1 but containing module 2 (M2+TE). Different synthetic precursors were examined for their effect on R‐TKL production. An overproducing strain of S. coelicolor expressing the M2+TE protein was found to be best for production of R‐TKLs. Racemic precursors were as effective as enantiomerically pure precursors in the fermentation process. The R group on the precursor significantly affected titer (propyl ≫ chloromethyl > vinyl). The R‐TKLs were unstable in fermentation broth at pH 6–8. A two‐phase fermentation with a pH shift was implemented to stabilize the products. The fermentation pH initially was controlled at optimal values for cell growth (pH 6.5) and then shifted to 5.5 during production. This doubled peak titers and stabilized the product. Finally, the concentration of synthetic precursor in the fermentation was optimized to improve production. A maximum titer of 500 mg/L 5‐chloromethyl‐TKL was obtained using 3.5 g/L precursor. |
doi_str_mv | 10.1021/bp0341949 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80142776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80142776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4609-5ae6a0564dac60d048a6ae07912cc9d79bc94b07d9f8caa0bdab24489eedb09e3</originalsourceid><addsrcrecordid>eNp90E1PGzEQBmCrAkFIOfQPVHuhqIdtx2uvP8SJQPmQohChVBwtrz2rumyywd4U8u-7KFE4wWnm8MyM5iXkC4UfFAr6s1oC41Rz_YkMaFlALoCxPTJQshS51EwdkqOU_gKAAlEckEPKpWCKsQE5m0Z0q5jamF-Gvu3QZ6PQpvWi-4MppKyts0n7D5tsFsMjdsFjNrauaxeYPpP92jYJj7d1SH5f_Zpd3OTju-vbi_Nx7rgAnZcWhYVScG-dAA9cWWERpKaFc9pLXTnNK5Be18pZC5W3VcG50oi-Ao1sSL5t9i5j-7TC1Jl5SA6bxi6wXSWjgPJC9h8NyemHUPJSgAShe_l9I11sU4pYm2UMcxvXhoJ5zdTsMu3t1-3WVTVH_ya3IfbgZAtscrapo124kN5cyYXiuugd3bjn0OD6_YtmNJve747nm5mQOnzZzdj4aIRksjQPk2sD08lopB6UmbL_TVOb9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745607069</pqid></control><display><type>article</type><title>Precursor-Directed Biosynthesis of Novel Triketide Lactones</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Regentin, Rika ; Kennedy, Jonathan ; Wu, Nicholas ; Carney, John R. ; Licari, Peter ; Galazzo, Jorge ; Desai, Ruchir</creator><creatorcontrib>Regentin, Rika ; Kennedy, Jonathan ; Wu, Nicholas ; Carney, John R. ; Licari, Peter ; Galazzo, Jorge ; Desai, Ruchir</creatorcontrib><description>Precursor‐directed biosynthesis was used to produce different triketide lactones (R‐TKLs) in a fermentation process. Plasmids expressing engineered versions of the first subunit of 6‐deoxyerythronolide B synthase (DEBS1) fused to the terminal DEBS thioesterase (TE) were introduced into three different Streptomyces strains. The DEBS1 protein fused to TE had either an inactivated ketosynthase domain (KS1°) or a partial DEBS1 lacking module 1 but containing module 2 (M2+TE). Different synthetic precursors were examined for their effect on R‐TKL production. An overproducing strain of S. coelicolor expressing the M2+TE protein was found to be best for production of R‐TKLs. Racemic precursors were as effective as enantiomerically pure precursors in the fermentation process. The R group on the precursor significantly affected titer (propyl ≫ chloromethyl > vinyl). The R‐TKLs were unstable in fermentation broth at pH 6–8. A two‐phase fermentation with a pH shift was implemented to stabilize the products. The fermentation pH initially was controlled at optimal values for cell growth (pH 6.5) and then shifted to 5.5 during production. This doubled peak titers and stabilized the product. Finally, the concentration of synthetic precursor in the fermentation was optimized to improve production. A maximum titer of 500 mg/L 5‐chloromethyl‐TKL was obtained using 3.5 g/L precursor.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1021/bp0341949</identifier><identifier>PMID: 14763833</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>USA: American Chemical Society</publisher><subject>Biological and medical sciences ; Bioreactors - microbiology ; Biotechnology ; Enzyme Precursors - genetics ; Enzyme Precursors - metabolism ; Enzyme Stability ; Erythronolide synthase ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration ; Lactones - isolation & purification ; Lactones - metabolism ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; pH effects ; Protein Engineering - methods ; Q1 ; Q2 ; Recombinant Proteins - metabolism ; Species Specificity ; Streptomyces ; Streptomyces - classification ; Streptomyces - genetics ; Streptomyces - metabolism</subject><ispartof>Biotechnology progress, 2004, Vol.20 (1), p.122-127</ispartof><rights>Copyright © 2004 American Institute of Chemical Engineers (AIChE)</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4609-5ae6a0564dac60d048a6ae07912cc9d79bc94b07d9f8caa0bdab24489eedb09e3</citedby><cites>FETCH-LOGICAL-c4609-5ae6a0564dac60d048a6ae07912cc9d79bc94b07d9f8caa0bdab24489eedb09e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1021%2Fbp0341949$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1021%2Fbp0341949$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,4014,27914,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15468492$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14763833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Regentin, Rika</creatorcontrib><creatorcontrib>Kennedy, Jonathan</creatorcontrib><creatorcontrib>Wu, Nicholas</creatorcontrib><creatorcontrib>Carney, John R.</creatorcontrib><creatorcontrib>Licari, Peter</creatorcontrib><creatorcontrib>Galazzo, Jorge</creatorcontrib><creatorcontrib>Desai, Ruchir</creatorcontrib><title>Precursor-Directed Biosynthesis of Novel Triketide Lactones</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>Precursor‐directed biosynthesis was used to produce different triketide lactones (R‐TKLs) in a fermentation process. Plasmids expressing engineered versions of the first subunit of 6‐deoxyerythronolide B synthase (DEBS1) fused to the terminal DEBS thioesterase (TE) were introduced into three different Streptomyces strains. The DEBS1 protein fused to TE had either an inactivated ketosynthase domain (KS1°) or a partial DEBS1 lacking module 1 but containing module 2 (M2+TE). Different synthetic precursors were examined for their effect on R‐TKL production. An overproducing strain of S. coelicolor expressing the M2+TE protein was found to be best for production of R‐TKLs. Racemic precursors were as effective as enantiomerically pure precursors in the fermentation process. The R group on the precursor significantly affected titer (propyl ≫ chloromethyl > vinyl). The R‐TKLs were unstable in fermentation broth at pH 6–8. A two‐phase fermentation with a pH shift was implemented to stabilize the products. The fermentation pH initially was controlled at optimal values for cell growth (pH 6.5) and then shifted to 5.5 during production. This doubled peak titers and stabilized the product. Finally, the concentration of synthetic precursor in the fermentation was optimized to improve production. A maximum titer of 500 mg/L 5‐chloromethyl‐TKL was obtained using 3.5 g/L precursor.</description><subject>Biological and medical sciences</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Enzyme Precursors - genetics</subject><subject>Enzyme Precursors - metabolism</subject><subject>Enzyme Stability</subject><subject>Erythronolide synthase</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Lactones - isolation & purification</subject><subject>Lactones - metabolism</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>pH effects</subject><subject>Protein Engineering - methods</subject><subject>Q1</subject><subject>Q2</subject><subject>Recombinant Proteins - metabolism</subject><subject>Species Specificity</subject><subject>Streptomyces</subject><subject>Streptomyces - classification</subject><subject>Streptomyces - genetics</subject><subject>Streptomyces - metabolism</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1PGzEQBmCrAkFIOfQPVHuhqIdtx2uvP8SJQPmQohChVBwtrz2rumyywd4U8u-7KFE4wWnm8MyM5iXkC4UfFAr6s1oC41Rz_YkMaFlALoCxPTJQshS51EwdkqOU_gKAAlEckEPKpWCKsQE5m0Z0q5jamF-Gvu3QZ6PQpvWi-4MppKyts0n7D5tsFsMjdsFjNrauaxeYPpP92jYJj7d1SH5f_Zpd3OTju-vbi_Nx7rgAnZcWhYVScG-dAA9cWWERpKaFc9pLXTnNK5Be18pZC5W3VcG50oi-Ao1sSL5t9i5j-7TC1Jl5SA6bxi6wXSWjgPJC9h8NyemHUPJSgAShe_l9I11sU4pYm2UMcxvXhoJ5zdTsMu3t1-3WVTVH_ya3IfbgZAtscrapo124kN5cyYXiuugd3bjn0OD6_YtmNJve747nm5mQOnzZzdj4aIRksjQPk2sD08lopB6UmbL_TVOb9w</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Regentin, Rika</creator><creator>Kennedy, Jonathan</creator><creator>Wu, Nicholas</creator><creator>Carney, John R.</creator><creator>Licari, Peter</creator><creator>Galazzo, Jorge</creator><creator>Desai, Ruchir</creator><general>American Chemical Society</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>Precursor-Directed Biosynthesis of Novel Triketide Lactones</title><author>Regentin, Rika ; Kennedy, Jonathan ; Wu, Nicholas ; Carney, John R. ; Licari, Peter ; Galazzo, Jorge ; Desai, Ruchir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4609-5ae6a0564dac60d048a6ae07912cc9d79bc94b07d9f8caa0bdab24489eedb09e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological and medical sciences</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Enzyme Precursors - genetics</topic><topic>Enzyme Precursors - metabolism</topic><topic>Enzyme Stability</topic><topic>Erythronolide synthase</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Lactones - isolation & purification</topic><topic>Lactones - metabolism</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>pH effects</topic><topic>Protein Engineering - methods</topic><topic>Q1</topic><topic>Q2</topic><topic>Recombinant Proteins - metabolism</topic><topic>Species Specificity</topic><topic>Streptomyces</topic><topic>Streptomyces - classification</topic><topic>Streptomyces - genetics</topic><topic>Streptomyces - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Regentin, Rika</creatorcontrib><creatorcontrib>Kennedy, Jonathan</creatorcontrib><creatorcontrib>Wu, Nicholas</creatorcontrib><creatorcontrib>Carney, John R.</creatorcontrib><creatorcontrib>Licari, Peter</creatorcontrib><creatorcontrib>Galazzo, Jorge</creatorcontrib><creatorcontrib>Desai, Ruchir</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Regentin, Rika</au><au>Kennedy, Jonathan</au><au>Wu, Nicholas</au><au>Carney, John R.</au><au>Licari, Peter</au><au>Galazzo, Jorge</au><au>Desai, Ruchir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precursor-Directed Biosynthesis of Novel Triketide Lactones</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2004</date><risdate>2004</risdate><volume>20</volume><issue>1</issue><spage>122</spage><epage>127</epage><pages>122-127</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>Precursor‐directed biosynthesis was used to produce different triketide lactones (R‐TKLs) in a fermentation process. Plasmids expressing engineered versions of the first subunit of 6‐deoxyerythronolide B synthase (DEBS1) fused to the terminal DEBS thioesterase (TE) were introduced into three different Streptomyces strains. The DEBS1 protein fused to TE had either an inactivated ketosynthase domain (KS1°) or a partial DEBS1 lacking module 1 but containing module 2 (M2+TE). Different synthetic precursors were examined for their effect on R‐TKL production. An overproducing strain of S. coelicolor expressing the M2+TE protein was found to be best for production of R‐TKLs. Racemic precursors were as effective as enantiomerically pure precursors in the fermentation process. The R group on the precursor significantly affected titer (propyl ≫ chloromethyl > vinyl). The R‐TKLs were unstable in fermentation broth at pH 6–8. A two‐phase fermentation with a pH shift was implemented to stabilize the products. The fermentation pH initially was controlled at optimal values for cell growth (pH 6.5) and then shifted to 5.5 during production. This doubled peak titers and stabilized the product. Finally, the concentration of synthetic precursor in the fermentation was optimized to improve production. A maximum titer of 500 mg/L 5‐chloromethyl‐TKL was obtained using 3.5 g/L precursor.</abstract><cop>USA</cop><pub>American Chemical Society</pub><pmid>14763833</pmid><doi>10.1021/bp0341949</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2004, Vol.20 (1), p.122-127 |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_80142776 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biological and medical sciences Bioreactors - microbiology Biotechnology Enzyme Precursors - genetics Enzyme Precursors - metabolism Enzyme Stability Erythronolide synthase Fermentation Fundamental and applied biological sciences. Psychology Hydrogen-Ion Concentration Lactones - isolation & purification Lactones - metabolism Multienzyme Complexes - genetics Multienzyme Complexes - metabolism pH effects Protein Engineering - methods Q1 Q2 Recombinant Proteins - metabolism Species Specificity Streptomyces Streptomyces - classification Streptomyces - genetics Streptomyces - metabolism |
title | Precursor-Directed Biosynthesis of Novel Triketide Lactones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precursor-Directed%20Biosynthesis%20of%20Novel%20Triketide%20Lactones&rft.jtitle=Biotechnology%20progress&rft.au=Regentin,%20Rika&rft.date=2004&rft.volume=20&rft.issue=1&rft.spage=122&rft.epage=127&rft.pages=122-127&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1021/bp0341949&rft_dat=%3Cproquest_cross%3E80142776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745607069&rft_id=info:pmid/14763833&rfr_iscdi=true |