Precursor-Directed Biosynthesis of Novel Triketide Lactones

Precursor‐directed biosynthesis was used to produce different triketide lactones (R‐TKLs) in a fermentation process. Plasmids expressing engineered versions of the first subunit of 6‐deoxyerythronolide B synthase (DEBS1) fused to the terminal DEBS thioesterase (TE) were introduced into three differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2004, Vol.20 (1), p.122-127
Hauptverfasser: Regentin, Rika, Kennedy, Jonathan, Wu, Nicholas, Carney, John R., Licari, Peter, Galazzo, Jorge, Desai, Ruchir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 1
container_start_page 122
container_title Biotechnology progress
container_volume 20
creator Regentin, Rika
Kennedy, Jonathan
Wu, Nicholas
Carney, John R.
Licari, Peter
Galazzo, Jorge
Desai, Ruchir
description Precursor‐directed biosynthesis was used to produce different triketide lactones (R‐TKLs) in a fermentation process. Plasmids expressing engineered versions of the first subunit of 6‐deoxyerythronolide B synthase (DEBS1) fused to the terminal DEBS thioesterase (TE) were introduced into three different Streptomyces strains. The DEBS1 protein fused to TE had either an inactivated ketosynthase domain (KS1°) or a partial DEBS1 lacking module 1 but containing module 2 (M2+TE). Different synthetic precursors were examined for their effect on R‐TKL production. An overproducing strain of S. coelicolor expressing the M2+TE protein was found to be best for production of R‐TKLs. Racemic precursors were as effective as enantiomerically pure precursors in the fermentation process. The R group on the precursor significantly affected titer (propyl ≫ chloromethyl > vinyl). The R‐TKLs were unstable in fermentation broth at pH 6–8. A two‐phase fermentation with a pH shift was implemented to stabilize the products. The fermentation pH initially was controlled at optimal values for cell growth (pH 6.5) and then shifted to 5.5 during production. This doubled peak titers and stabilized the product. Finally, the concentration of synthetic precursor in the fermentation was optimized to improve production. A maximum titer of 500 mg/L 5‐chloromethyl‐TKL was obtained using 3.5 g/L precursor.
doi_str_mv 10.1021/bp0341949
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80142776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80142776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4609-5ae6a0564dac60d048a6ae07912cc9d79bc94b07d9f8caa0bdab24489eedb09e3</originalsourceid><addsrcrecordid>eNp90E1PGzEQBmCrAkFIOfQPVHuhqIdtx2uvP8SJQPmQohChVBwtrz2rumyywd4U8u-7KFE4wWnm8MyM5iXkC4UfFAr6s1oC41Rz_YkMaFlALoCxPTJQshS51EwdkqOU_gKAAlEckEPKpWCKsQE5m0Z0q5jamF-Gvu3QZ6PQpvWi-4MppKyts0n7D5tsFsMjdsFjNrauaxeYPpP92jYJj7d1SH5f_Zpd3OTju-vbi_Nx7rgAnZcWhYVScG-dAA9cWWERpKaFc9pLXTnNK5Be18pZC5W3VcG50oi-Ao1sSL5t9i5j-7TC1Jl5SA6bxi6wXSWjgPJC9h8NyemHUPJSgAShe_l9I11sU4pYm2UMcxvXhoJ5zdTsMu3t1-3WVTVH_ya3IfbgZAtscrapo124kN5cyYXiuugd3bjn0OD6_YtmNJve747nm5mQOnzZzdj4aIRksjQPk2sD08lopB6UmbL_TVOb9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745607069</pqid></control><display><type>article</type><title>Precursor-Directed Biosynthesis of Novel Triketide Lactones</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Regentin, Rika ; Kennedy, Jonathan ; Wu, Nicholas ; Carney, John R. ; Licari, Peter ; Galazzo, Jorge ; Desai, Ruchir</creator><creatorcontrib>Regentin, Rika ; Kennedy, Jonathan ; Wu, Nicholas ; Carney, John R. ; Licari, Peter ; Galazzo, Jorge ; Desai, Ruchir</creatorcontrib><description>Precursor‐directed biosynthesis was used to produce different triketide lactones (R‐TKLs) in a fermentation process. Plasmids expressing engineered versions of the first subunit of 6‐deoxyerythronolide B synthase (DEBS1) fused to the terminal DEBS thioesterase (TE) were introduced into three different Streptomyces strains. The DEBS1 protein fused to TE had either an inactivated ketosynthase domain (KS1°) or a partial DEBS1 lacking module 1 but containing module 2 (M2+TE). Different synthetic precursors were examined for their effect on R‐TKL production. An overproducing strain of S. coelicolor expressing the M2+TE protein was found to be best for production of R‐TKLs. Racemic precursors were as effective as enantiomerically pure precursors in the fermentation process. The R group on the precursor significantly affected titer (propyl ≫ chloromethyl &gt; vinyl). The R‐TKLs were unstable in fermentation broth at pH 6–8. A two‐phase fermentation with a pH shift was implemented to stabilize the products. The fermentation pH initially was controlled at optimal values for cell growth (pH 6.5) and then shifted to 5.5 during production. This doubled peak titers and stabilized the product. Finally, the concentration of synthetic precursor in the fermentation was optimized to improve production. A maximum titer of 500 mg/L 5‐chloromethyl‐TKL was obtained using 3.5 g/L precursor.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1021/bp0341949</identifier><identifier>PMID: 14763833</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>USA: American Chemical Society</publisher><subject>Biological and medical sciences ; Bioreactors - microbiology ; Biotechnology ; Enzyme Precursors - genetics ; Enzyme Precursors - metabolism ; Enzyme Stability ; Erythronolide synthase ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration ; Lactones - isolation &amp; purification ; Lactones - metabolism ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; pH effects ; Protein Engineering - methods ; Q1 ; Q2 ; Recombinant Proteins - metabolism ; Species Specificity ; Streptomyces ; Streptomyces - classification ; Streptomyces - genetics ; Streptomyces - metabolism</subject><ispartof>Biotechnology progress, 2004, Vol.20 (1), p.122-127</ispartof><rights>Copyright © 2004 American Institute of Chemical Engineers (AIChE)</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4609-5ae6a0564dac60d048a6ae07912cc9d79bc94b07d9f8caa0bdab24489eedb09e3</citedby><cites>FETCH-LOGICAL-c4609-5ae6a0564dac60d048a6ae07912cc9d79bc94b07d9f8caa0bdab24489eedb09e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1021%2Fbp0341949$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1021%2Fbp0341949$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,4014,27914,27915,27916,45565,45566</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15468492$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14763833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Regentin, Rika</creatorcontrib><creatorcontrib>Kennedy, Jonathan</creatorcontrib><creatorcontrib>Wu, Nicholas</creatorcontrib><creatorcontrib>Carney, John R.</creatorcontrib><creatorcontrib>Licari, Peter</creatorcontrib><creatorcontrib>Galazzo, Jorge</creatorcontrib><creatorcontrib>Desai, Ruchir</creatorcontrib><title>Precursor-Directed Biosynthesis of Novel Triketide Lactones</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>Precursor‐directed biosynthesis was used to produce different triketide lactones (R‐TKLs) in a fermentation process. Plasmids expressing engineered versions of the first subunit of 6‐deoxyerythronolide B synthase (DEBS1) fused to the terminal DEBS thioesterase (TE) were introduced into three different Streptomyces strains. The DEBS1 protein fused to TE had either an inactivated ketosynthase domain (KS1°) or a partial DEBS1 lacking module 1 but containing module 2 (M2+TE). Different synthetic precursors were examined for their effect on R‐TKL production. An overproducing strain of S. coelicolor expressing the M2+TE protein was found to be best for production of R‐TKLs. Racemic precursors were as effective as enantiomerically pure precursors in the fermentation process. The R group on the precursor significantly affected titer (propyl ≫ chloromethyl &gt; vinyl). The R‐TKLs were unstable in fermentation broth at pH 6–8. A two‐phase fermentation with a pH shift was implemented to stabilize the products. The fermentation pH initially was controlled at optimal values for cell growth (pH 6.5) and then shifted to 5.5 during production. This doubled peak titers and stabilized the product. Finally, the concentration of synthetic precursor in the fermentation was optimized to improve production. A maximum titer of 500 mg/L 5‐chloromethyl‐TKL was obtained using 3.5 g/L precursor.</description><subject>Biological and medical sciences</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Enzyme Precursors - genetics</subject><subject>Enzyme Precursors - metabolism</subject><subject>Enzyme Stability</subject><subject>Erythronolide synthase</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Lactones - isolation &amp; purification</subject><subject>Lactones - metabolism</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>pH effects</subject><subject>Protein Engineering - methods</subject><subject>Q1</subject><subject>Q2</subject><subject>Recombinant Proteins - metabolism</subject><subject>Species Specificity</subject><subject>Streptomyces</subject><subject>Streptomyces - classification</subject><subject>Streptomyces - genetics</subject><subject>Streptomyces - metabolism</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E1PGzEQBmCrAkFIOfQPVHuhqIdtx2uvP8SJQPmQohChVBwtrz2rumyywd4U8u-7KFE4wWnm8MyM5iXkC4UfFAr6s1oC41Rz_YkMaFlALoCxPTJQshS51EwdkqOU_gKAAlEckEPKpWCKsQE5m0Z0q5jamF-Gvu3QZ6PQpvWi-4MppKyts0n7D5tsFsMjdsFjNrauaxeYPpP92jYJj7d1SH5f_Zpd3OTju-vbi_Nx7rgAnZcWhYVScG-dAA9cWWERpKaFc9pLXTnNK5Be18pZC5W3VcG50oi-Ao1sSL5t9i5j-7TC1Jl5SA6bxi6wXSWjgPJC9h8NyemHUPJSgAShe_l9I11sU4pYm2UMcxvXhoJ5zdTsMu3t1-3WVTVH_ya3IfbgZAtscrapo124kN5cyYXiuugd3bjn0OD6_YtmNJve747nm5mQOnzZzdj4aIRksjQPk2sD08lopB6UmbL_TVOb9w</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Regentin, Rika</creator><creator>Kennedy, Jonathan</creator><creator>Wu, Nicholas</creator><creator>Carney, John R.</creator><creator>Licari, Peter</creator><creator>Galazzo, Jorge</creator><creator>Desai, Ruchir</creator><general>American Chemical Society</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>Precursor-Directed Biosynthesis of Novel Triketide Lactones</title><author>Regentin, Rika ; Kennedy, Jonathan ; Wu, Nicholas ; Carney, John R. ; Licari, Peter ; Galazzo, Jorge ; Desai, Ruchir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4609-5ae6a0564dac60d048a6ae07912cc9d79bc94b07d9f8caa0bdab24489eedb09e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biological and medical sciences</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Enzyme Precursors - genetics</topic><topic>Enzyme Precursors - metabolism</topic><topic>Enzyme Stability</topic><topic>Erythronolide synthase</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Lactones - isolation &amp; purification</topic><topic>Lactones - metabolism</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>pH effects</topic><topic>Protein Engineering - methods</topic><topic>Q1</topic><topic>Q2</topic><topic>Recombinant Proteins - metabolism</topic><topic>Species Specificity</topic><topic>Streptomyces</topic><topic>Streptomyces - classification</topic><topic>Streptomyces - genetics</topic><topic>Streptomyces - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Regentin, Rika</creatorcontrib><creatorcontrib>Kennedy, Jonathan</creatorcontrib><creatorcontrib>Wu, Nicholas</creatorcontrib><creatorcontrib>Carney, John R.</creatorcontrib><creatorcontrib>Licari, Peter</creatorcontrib><creatorcontrib>Galazzo, Jorge</creatorcontrib><creatorcontrib>Desai, Ruchir</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Regentin, Rika</au><au>Kennedy, Jonathan</au><au>Wu, Nicholas</au><au>Carney, John R.</au><au>Licari, Peter</au><au>Galazzo, Jorge</au><au>Desai, Ruchir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precursor-Directed Biosynthesis of Novel Triketide Lactones</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2004</date><risdate>2004</risdate><volume>20</volume><issue>1</issue><spage>122</spage><epage>127</epage><pages>122-127</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>Precursor‐directed biosynthesis was used to produce different triketide lactones (R‐TKLs) in a fermentation process. Plasmids expressing engineered versions of the first subunit of 6‐deoxyerythronolide B synthase (DEBS1) fused to the terminal DEBS thioesterase (TE) were introduced into three different Streptomyces strains. The DEBS1 protein fused to TE had either an inactivated ketosynthase domain (KS1°) or a partial DEBS1 lacking module 1 but containing module 2 (M2+TE). Different synthetic precursors were examined for their effect on R‐TKL production. An overproducing strain of S. coelicolor expressing the M2+TE protein was found to be best for production of R‐TKLs. Racemic precursors were as effective as enantiomerically pure precursors in the fermentation process. The R group on the precursor significantly affected titer (propyl ≫ chloromethyl &gt; vinyl). The R‐TKLs were unstable in fermentation broth at pH 6–8. A two‐phase fermentation with a pH shift was implemented to stabilize the products. The fermentation pH initially was controlled at optimal values for cell growth (pH 6.5) and then shifted to 5.5 during production. This doubled peak titers and stabilized the product. Finally, the concentration of synthetic precursor in the fermentation was optimized to improve production. A maximum titer of 500 mg/L 5‐chloromethyl‐TKL was obtained using 3.5 g/L precursor.</abstract><cop>USA</cop><pub>American Chemical Society</pub><pmid>14763833</pmid><doi>10.1021/bp0341949</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2004, Vol.20 (1), p.122-127
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_80142776
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biological and medical sciences
Bioreactors - microbiology
Biotechnology
Enzyme Precursors - genetics
Enzyme Precursors - metabolism
Enzyme Stability
Erythronolide synthase
Fermentation
Fundamental and applied biological sciences. Psychology
Hydrogen-Ion Concentration
Lactones - isolation & purification
Lactones - metabolism
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
pH effects
Protein Engineering - methods
Q1
Q2
Recombinant Proteins - metabolism
Species Specificity
Streptomyces
Streptomyces - classification
Streptomyces - genetics
Streptomyces - metabolism
title Precursor-Directed Biosynthesis of Novel Triketide Lactones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precursor-Directed%20Biosynthesis%20of%20Novel%20Triketide%20Lactones&rft.jtitle=Biotechnology%20progress&rft.au=Regentin,%20Rika&rft.date=2004&rft.volume=20&rft.issue=1&rft.spage=122&rft.epage=127&rft.pages=122-127&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1021/bp0341949&rft_dat=%3Cproquest_cross%3E80142776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745607069&rft_id=info:pmid/14763833&rfr_iscdi=true