Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning

The purpose of this study is to perform a clinical evaluation of the first commercial (MDS Nordion, now Nucletron) treatment planning system for electron beams incorporating Monte Carlo dose calculation module. This software implements Kawrakow’s VMC ++ voxel-based Monte Carlo calculation algorithm....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2004-01, Vol.31 (1), p.142-153
Hauptverfasser: Cygler, J. E., Daskalov, G. M., Chan, G. H., Ding, G. X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 1
container_start_page 142
container_title Medical physics (Lancaster)
container_volume 31
creator Cygler, J. E.
Daskalov, G. M.
Chan, G. H.
Ding, G. X.
description The purpose of this study is to perform a clinical evaluation of the first commercial (MDS Nordion, now Nucletron) treatment planning system for electron beams incorporating Monte Carlo dose calculation module. This software implements Kawrakow’s VMC ++ voxel-based Monte Carlo calculation algorithm. The accuracy of the dose distribution calculations is evaluated by direct comparisons with extensive sets of measured data in homogeneous and heterogeneous phantoms at different source-to-surface distances (SSDs) and gantry angles. We also verify the accuracy of the Monte Carlo module for monitor unit calculations in comparison with independent hand calculations for homogeneous water phantom at two different SSDs. All electron beams in the range 6–20 MeV are from a Siemens KD-2 linear accelerator. We used 10 000 or 50 000 histories/cm 2 in our Monte Carlo calculations, which led to about 2.5% and 1% relative standard error of the mean of the calculated dose. The dose calculation time depends on the number of histories, the number of voxels used to map the patient anatomy, the field size, and the beam energy. The typical run time of the Monte Carlo calculations (10 000  histories/cm 2 ) is 1.02 min on a 2.2 GHz Pentium 4 Xeon computer for a 9 MeV beam, 10×10  cm 2 field size, incident on the phantom 15×15×10  cm 3 consisting of 31 CT slices and voxels size of 3×3×3  mm 3 (total of 486 720 voxels). We find good agreement (discrepancies smaller than 5%) for most of the tested dose distributions. We also find excellent agreement (discrepancies of 2.5% or less) for the monitor unit calculations relative to the independent manual calculations. The accuracy of monitor unit calculations does not depend on the SSD used, which allows the use of one virtual machine for each beam energy for all arbitrary SSDs. In some cases the test results are found to be sensitive to the voxel size applied such that bigger systematic errors (>5%) occur when large voxel sizes interfere with the extensions of heterogeneities or dose gradients because of differences between the experimental and calculated geometries. Therefore, user control over voxelization is important for high accuracy electron dose calculations.
doi_str_mv 10.1118/1.1633105
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_80142494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80142494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4555-19d41de3454b7caf76d060c1dc6dfd65551d878510ff4c526d113d7bbf46669f3</originalsourceid><addsrcrecordid>eNp9kM1u1TAQRq0KRG8Li75A5RUSSGk98U9uluiqUKRWsGjXkWOPi6kTX2ynVd-elESCTVmNNDrfmdFHyAmwMwDYnsMZKM6ByQOyqUXDK1Gz9hXZMNaKqhZMHpKjnH8yxhSX7A05BNEoYJxtyP3Fgw6TLj6ONDpafiB1PuVCTRwGTMbrQK_jWJDudAqR2piRGh3MFJYQjnd-nEMxUQxoSpp3PeqBloS6DDgWug96HP1495a8djpkfLfOY3L7-eJmd1ldffvydffpqjJCSllBawVY5EKKvjHaNcoyxQxYo6yzakbAbputBOacMLJWFoDbpu-dUEq1jh-T94t3n-KvCXPpBp8NhvkNjFPutgxELVoxgx8W0KSYc0LX7ZMfdHrqgHXPzXbQrc3O7OkqnfoB7V9yrXIGqgV49AGfXjZ1199X4ceFz8aXP13-9_qL8ENM_8j31vHfZKGdfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80142494</pqid></control><display><type>article</type><title>Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Cygler, J. E. ; Daskalov, G. M. ; Chan, G. H. ; Ding, G. X.</creator><creatorcontrib>Cygler, J. E. ; Daskalov, G. M. ; Chan, G. H. ; Ding, G. X.</creatorcontrib><description>The purpose of this study is to perform a clinical evaluation of the first commercial (MDS Nordion, now Nucletron) treatment planning system for electron beams incorporating Monte Carlo dose calculation module. This software implements Kawrakow’s VMC ++ voxel-based Monte Carlo calculation algorithm. The accuracy of the dose distribution calculations is evaluated by direct comparisons with extensive sets of measured data in homogeneous and heterogeneous phantoms at different source-to-surface distances (SSDs) and gantry angles. We also verify the accuracy of the Monte Carlo module for monitor unit calculations in comparison with independent hand calculations for homogeneous water phantom at two different SSDs. All electron beams in the range 6–20 MeV are from a Siemens KD-2 linear accelerator. We used 10 000 or 50 000 histories/cm 2 in our Monte Carlo calculations, which led to about 2.5% and 1% relative standard error of the mean of the calculated dose. The dose calculation time depends on the number of histories, the number of voxels used to map the patient anatomy, the field size, and the beam energy. The typical run time of the Monte Carlo calculations (10 000  histories/cm 2 ) is 1.02 min on a 2.2 GHz Pentium 4 Xeon computer for a 9 MeV beam, 10×10  cm 2 field size, incident on the phantom 15×15×10  cm 3 consisting of 31 CT slices and voxels size of 3×3×3  mm 3 (total of 486 720 voxels). We find good agreement (discrepancies smaller than 5%) for most of the tested dose distributions. We also find excellent agreement (discrepancies of 2.5% or less) for the monitor unit calculations relative to the independent manual calculations. The accuracy of monitor unit calculations does not depend on the SSD used, which allows the use of one virtual machine for each beam energy for all arbitrary SSDs. In some cases the test results are found to be sensitive to the voxel size applied such that bigger systematic errors (&gt;5%) occur when large voxel sizes interfere with the extensions of heterogeneities or dose gradients because of differences between the experimental and calculated geometries. Therefore, user control over voxelization is important for high accuracy electron dose calculations.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1633105</identifier><identifier>PMID: 14761030</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Algorithms ; Anatomy ; Ancillary equipment ; Computer simulation ; Computer software ; dosimetry ; Dosimetry/exposure assessment ; electron beam ; electron beam applications ; Electron beams ; Electrons ; Field size ; inhomogeneous phantoms ; Linear accelerators ; medical computing ; Medical treatment planning ; monitor unit calculations ; Monte Carlo algorithms ; Monte Carlo Method ; Monte Carlo methods ; Monte Carlo treatment planning ; Particle Accelerators - instrumentation ; phantoms ; Phantoms, Imaging ; Physicists ; planning ; radiation therapy ; Radiotherapy, Conformal - instrumentation ; Scattering, Radiation ; Software ; Statistical methods ; Treatment strategy</subject><ispartof>Medical physics (Lancaster), 2004-01, Vol.31 (1), p.142-153</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2004 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4555-19d41de3454b7caf76d060c1dc6dfd65551d878510ff4c526d113d7bbf46669f3</citedby><cites>FETCH-LOGICAL-c4555-19d41de3454b7caf76d060c1dc6dfd65551d878510ff4c526d113d7bbf46669f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1633105$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1633105$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14761030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cygler, J. E.</creatorcontrib><creatorcontrib>Daskalov, G. M.</creatorcontrib><creatorcontrib>Chan, G. H.</creatorcontrib><creatorcontrib>Ding, G. X.</creatorcontrib><title>Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>The purpose of this study is to perform a clinical evaluation of the first commercial (MDS Nordion, now Nucletron) treatment planning system for electron beams incorporating Monte Carlo dose calculation module. This software implements Kawrakow’s VMC ++ voxel-based Monte Carlo calculation algorithm. The accuracy of the dose distribution calculations is evaluated by direct comparisons with extensive sets of measured data in homogeneous and heterogeneous phantoms at different source-to-surface distances (SSDs) and gantry angles. We also verify the accuracy of the Monte Carlo module for monitor unit calculations in comparison with independent hand calculations for homogeneous water phantom at two different SSDs. All electron beams in the range 6–20 MeV are from a Siemens KD-2 linear accelerator. We used 10 000 or 50 000 histories/cm 2 in our Monte Carlo calculations, which led to about 2.5% and 1% relative standard error of the mean of the calculated dose. The dose calculation time depends on the number of histories, the number of voxels used to map the patient anatomy, the field size, and the beam energy. The typical run time of the Monte Carlo calculations (10 000  histories/cm 2 ) is 1.02 min on a 2.2 GHz Pentium 4 Xeon computer for a 9 MeV beam, 10×10  cm 2 field size, incident on the phantom 15×15×10  cm 3 consisting of 31 CT slices and voxels size of 3×3×3  mm 3 (total of 486 720 voxels). We find good agreement (discrepancies smaller than 5%) for most of the tested dose distributions. We also find excellent agreement (discrepancies of 2.5% or less) for the monitor unit calculations relative to the independent manual calculations. The accuracy of monitor unit calculations does not depend on the SSD used, which allows the use of one virtual machine for each beam energy for all arbitrary SSDs. In some cases the test results are found to be sensitive to the voxel size applied such that bigger systematic errors (&gt;5%) occur when large voxel sizes interfere with the extensions of heterogeneities or dose gradients because of differences between the experimental and calculated geometries. Therefore, user control over voxelization is important for high accuracy electron dose calculations.</description><subject>Algorithms</subject><subject>Anatomy</subject><subject>Ancillary equipment</subject><subject>Computer simulation</subject><subject>Computer software</subject><subject>dosimetry</subject><subject>Dosimetry/exposure assessment</subject><subject>electron beam</subject><subject>electron beam applications</subject><subject>Electron beams</subject><subject>Electrons</subject><subject>Field size</subject><subject>inhomogeneous phantoms</subject><subject>Linear accelerators</subject><subject>medical computing</subject><subject>Medical treatment planning</subject><subject>monitor unit calculations</subject><subject>Monte Carlo algorithms</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo treatment planning</subject><subject>Particle Accelerators - instrumentation</subject><subject>phantoms</subject><subject>Phantoms, Imaging</subject><subject>Physicists</subject><subject>planning</subject><subject>radiation therapy</subject><subject>Radiotherapy, Conformal - instrumentation</subject><subject>Scattering, Radiation</subject><subject>Software</subject><subject>Statistical methods</subject><subject>Treatment strategy</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1u1TAQRq0KRG8Li75A5RUSSGk98U9uluiqUKRWsGjXkWOPi6kTX2ynVd-elESCTVmNNDrfmdFHyAmwMwDYnsMZKM6ByQOyqUXDK1Gz9hXZMNaKqhZMHpKjnH8yxhSX7A05BNEoYJxtyP3Fgw6TLj6ONDpafiB1PuVCTRwGTMbrQK_jWJDudAqR2piRGh3MFJYQjnd-nEMxUQxoSpp3PeqBloS6DDgWug96HP1495a8djpkfLfOY3L7-eJmd1ldffvydffpqjJCSllBawVY5EKKvjHaNcoyxQxYo6yzakbAbputBOacMLJWFoDbpu-dUEq1jh-T94t3n-KvCXPpBp8NhvkNjFPutgxELVoxgx8W0KSYc0LX7ZMfdHrqgHXPzXbQrc3O7OkqnfoB7V9yrXIGqgV49AGfXjZ1199X4ceFz8aXP13-9_qL8ENM_8j31vHfZKGdfg</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Cygler, J. E.</creator><creator>Daskalov, G. M.</creator><creator>Chan, G. H.</creator><creator>Ding, G. X.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200401</creationdate><title>Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning</title><author>Cygler, J. E. ; Daskalov, G. M. ; Chan, G. H. ; Ding, G. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4555-19d41de3454b7caf76d060c1dc6dfd65551d878510ff4c526d113d7bbf46669f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Anatomy</topic><topic>Ancillary equipment</topic><topic>Computer simulation</topic><topic>Computer software</topic><topic>dosimetry</topic><topic>Dosimetry/exposure assessment</topic><topic>electron beam</topic><topic>electron beam applications</topic><topic>Electron beams</topic><topic>Electrons</topic><topic>Field size</topic><topic>inhomogeneous phantoms</topic><topic>Linear accelerators</topic><topic>medical computing</topic><topic>Medical treatment planning</topic><topic>monitor unit calculations</topic><topic>Monte Carlo algorithms</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo treatment planning</topic><topic>Particle Accelerators - instrumentation</topic><topic>phantoms</topic><topic>Phantoms, Imaging</topic><topic>Physicists</topic><topic>planning</topic><topic>radiation therapy</topic><topic>Radiotherapy, Conformal - instrumentation</topic><topic>Scattering, Radiation</topic><topic>Software</topic><topic>Statistical methods</topic><topic>Treatment strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cygler, J. E.</creatorcontrib><creatorcontrib>Daskalov, G. M.</creatorcontrib><creatorcontrib>Chan, G. H.</creatorcontrib><creatorcontrib>Ding, G. X.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cygler, J. E.</au><au>Daskalov, G. M.</au><au>Chan, G. H.</au><au>Ding, G. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2004-01</date><risdate>2004</risdate><volume>31</volume><issue>1</issue><spage>142</spage><epage>153</epage><pages>142-153</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>The purpose of this study is to perform a clinical evaluation of the first commercial (MDS Nordion, now Nucletron) treatment planning system for electron beams incorporating Monte Carlo dose calculation module. This software implements Kawrakow’s VMC ++ voxel-based Monte Carlo calculation algorithm. The accuracy of the dose distribution calculations is evaluated by direct comparisons with extensive sets of measured data in homogeneous and heterogeneous phantoms at different source-to-surface distances (SSDs) and gantry angles. We also verify the accuracy of the Monte Carlo module for monitor unit calculations in comparison with independent hand calculations for homogeneous water phantom at two different SSDs. All electron beams in the range 6–20 MeV are from a Siemens KD-2 linear accelerator. We used 10 000 or 50 000 histories/cm 2 in our Monte Carlo calculations, which led to about 2.5% and 1% relative standard error of the mean of the calculated dose. The dose calculation time depends on the number of histories, the number of voxels used to map the patient anatomy, the field size, and the beam energy. The typical run time of the Monte Carlo calculations (10 000  histories/cm 2 ) is 1.02 min on a 2.2 GHz Pentium 4 Xeon computer for a 9 MeV beam, 10×10  cm 2 field size, incident on the phantom 15×15×10  cm 3 consisting of 31 CT slices and voxels size of 3×3×3  mm 3 (total of 486 720 voxels). We find good agreement (discrepancies smaller than 5%) for most of the tested dose distributions. We also find excellent agreement (discrepancies of 2.5% or less) for the monitor unit calculations relative to the independent manual calculations. The accuracy of monitor unit calculations does not depend on the SSD used, which allows the use of one virtual machine for each beam energy for all arbitrary SSDs. In some cases the test results are found to be sensitive to the voxel size applied such that bigger systematic errors (&gt;5%) occur when large voxel sizes interfere with the extensions of heterogeneities or dose gradients because of differences between the experimental and calculated geometries. Therefore, user control over voxelization is important for high accuracy electron dose calculations.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>14761030</pmid><doi>10.1118/1.1633105</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2004-01, Vol.31 (1), p.142-153
issn 0094-2405
2473-4209
language eng
recordid cdi_proquest_miscellaneous_80142494
source MEDLINE; Wiley Journals
subjects Algorithms
Anatomy
Ancillary equipment
Computer simulation
Computer software
dosimetry
Dosimetry/exposure assessment
electron beam
electron beam applications
Electron beams
Electrons
Field size
inhomogeneous phantoms
Linear accelerators
medical computing
Medical treatment planning
monitor unit calculations
Monte Carlo algorithms
Monte Carlo Method
Monte Carlo methods
Monte Carlo treatment planning
Particle Accelerators - instrumentation
phantoms
Phantoms, Imaging
Physicists
planning
radiation therapy
Radiotherapy, Conformal - instrumentation
Scattering, Radiation
Software
Statistical methods
Treatment strategy
title Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20first%20commercial%20Monte%20Carlo%20dose%20calculation%20engine%20for%20electron%20beam%20treatment%20planning&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Cygler,%20J.%20E.&rft.date=2004-01&rft.volume=31&rft.issue=1&rft.spage=142&rft.epage=153&rft.pages=142-153&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1633105&rft_dat=%3Cproquest_pubme%3E80142494%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80142494&rft_id=info:pmid/14761030&rfr_iscdi=true