Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning
The purpose of this study is to perform a clinical evaluation of the first commercial (MDS Nordion, now Nucletron) treatment planning system for electron beams incorporating Monte Carlo dose calculation module. This software implements Kawrakow’s VMC ++ voxel-based Monte Carlo calculation algorithm....
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2004-01, Vol.31 (1), p.142-153 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 153 |
---|---|
container_issue | 1 |
container_start_page | 142 |
container_title | Medical physics (Lancaster) |
container_volume | 31 |
creator | Cygler, J. E. Daskalov, G. M. Chan, G. H. Ding, G. X. |
description | The purpose of this study is to perform a clinical evaluation of the first commercial (MDS Nordion, now Nucletron) treatment planning system for electron beams incorporating Monte Carlo dose calculation module. This software implements Kawrakow’s
VMC
++
voxel-based Monte Carlo calculation algorithm. The accuracy of the dose distribution calculations is evaluated by direct comparisons with extensive sets of measured data in homogeneous and heterogeneous phantoms at different source-to-surface distances (SSDs) and gantry angles. We also verify the accuracy of the Monte Carlo module for monitor unit calculations in comparison with independent hand calculations for homogeneous water phantom at two different SSDs. All electron beams in the range 6–20 MeV are from a Siemens KD-2 linear accelerator. We used 10 000 or 50 000
histories/cm
2
in our Monte Carlo calculations, which led to about 2.5% and 1% relative standard error of the mean of the calculated dose. The dose calculation time depends on the number of histories, the number of voxels used to map the patient anatomy, the field size, and the beam energy. The typical run time of the Monte Carlo calculations
(10 000
histories/cm
2
)
is 1.02 min on a 2.2 GHz Pentium 4 Xeon computer for a 9 MeV beam,
10×10
cm
2
field size, incident on the phantom
15×15×10
cm
3
consisting of 31 CT slices and voxels size of
3×3×3
mm
3
(total of 486 720 voxels). We find good agreement (discrepancies smaller than 5%) for most of the tested dose distributions. We also find excellent agreement (discrepancies of 2.5% or less) for the monitor unit calculations relative to the independent manual calculations. The accuracy of monitor unit calculations does not depend on the SSD used, which allows the use of one virtual machine for each beam energy for all arbitrary SSDs. In some cases the test results are found to be sensitive to the voxel size applied such that bigger systematic errors
(>5%)
occur when large voxel sizes interfere with the extensions of heterogeneities or dose gradients because of differences between the experimental and calculated geometries. Therefore, user control over voxelization is important for high accuracy electron dose calculations. |
doi_str_mv | 10.1118/1.1633105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_80142494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80142494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4555-19d41de3454b7caf76d060c1dc6dfd65551d878510ff4c526d113d7bbf46669f3</originalsourceid><addsrcrecordid>eNp9kM1u1TAQRq0KRG8Li75A5RUSSGk98U9uluiqUKRWsGjXkWOPi6kTX2ynVd-elESCTVmNNDrfmdFHyAmwMwDYnsMZKM6ByQOyqUXDK1Gz9hXZMNaKqhZMHpKjnH8yxhSX7A05BNEoYJxtyP3Fgw6TLj6ONDpafiB1PuVCTRwGTMbrQK_jWJDudAqR2piRGh3MFJYQjnd-nEMxUQxoSpp3PeqBloS6DDgWug96HP1495a8djpkfLfOY3L7-eJmd1ldffvydffpqjJCSllBawVY5EKKvjHaNcoyxQxYo6yzakbAbputBOacMLJWFoDbpu-dUEq1jh-T94t3n-KvCXPpBp8NhvkNjFPutgxELVoxgx8W0KSYc0LX7ZMfdHrqgHXPzXbQrc3O7OkqnfoB7V9yrXIGqgV49AGfXjZ1199X4ceFz8aXP13-9_qL8ENM_8j31vHfZKGdfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80142494</pqid></control><display><type>article</type><title>Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Cygler, J. E. ; Daskalov, G. M. ; Chan, G. H. ; Ding, G. X.</creator><creatorcontrib>Cygler, J. E. ; Daskalov, G. M. ; Chan, G. H. ; Ding, G. X.</creatorcontrib><description>The purpose of this study is to perform a clinical evaluation of the first commercial (MDS Nordion, now Nucletron) treatment planning system for electron beams incorporating Monte Carlo dose calculation module. This software implements Kawrakow’s
VMC
++
voxel-based Monte Carlo calculation algorithm. The accuracy of the dose distribution calculations is evaluated by direct comparisons with extensive sets of measured data in homogeneous and heterogeneous phantoms at different source-to-surface distances (SSDs) and gantry angles. We also verify the accuracy of the Monte Carlo module for monitor unit calculations in comparison with independent hand calculations for homogeneous water phantom at two different SSDs. All electron beams in the range 6–20 MeV are from a Siemens KD-2 linear accelerator. We used 10 000 or 50 000
histories/cm
2
in our Monte Carlo calculations, which led to about 2.5% and 1% relative standard error of the mean of the calculated dose. The dose calculation time depends on the number of histories, the number of voxels used to map the patient anatomy, the field size, and the beam energy. The typical run time of the Monte Carlo calculations
(10 000
histories/cm
2
)
is 1.02 min on a 2.2 GHz Pentium 4 Xeon computer for a 9 MeV beam,
10×10
cm
2
field size, incident on the phantom
15×15×10
cm
3
consisting of 31 CT slices and voxels size of
3×3×3
mm
3
(total of 486 720 voxels). We find good agreement (discrepancies smaller than 5%) for most of the tested dose distributions. We also find excellent agreement (discrepancies of 2.5% or less) for the monitor unit calculations relative to the independent manual calculations. The accuracy of monitor unit calculations does not depend on the SSD used, which allows the use of one virtual machine for each beam energy for all arbitrary SSDs. In some cases the test results are found to be sensitive to the voxel size applied such that bigger systematic errors
(>5%)
occur when large voxel sizes interfere with the extensions of heterogeneities or dose gradients because of differences between the experimental and calculated geometries. Therefore, user control over voxelization is important for high accuracy electron dose calculations.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1633105</identifier><identifier>PMID: 14761030</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Algorithms ; Anatomy ; Ancillary equipment ; Computer simulation ; Computer software ; dosimetry ; Dosimetry/exposure assessment ; electron beam ; electron beam applications ; Electron beams ; Electrons ; Field size ; inhomogeneous phantoms ; Linear accelerators ; medical computing ; Medical treatment planning ; monitor unit calculations ; Monte Carlo algorithms ; Monte Carlo Method ; Monte Carlo methods ; Monte Carlo treatment planning ; Particle Accelerators - instrumentation ; phantoms ; Phantoms, Imaging ; Physicists ; planning ; radiation therapy ; Radiotherapy, Conformal - instrumentation ; Scattering, Radiation ; Software ; Statistical methods ; Treatment strategy</subject><ispartof>Medical physics (Lancaster), 2004-01, Vol.31 (1), p.142-153</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2004 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4555-19d41de3454b7caf76d060c1dc6dfd65551d878510ff4c526d113d7bbf46669f3</citedby><cites>FETCH-LOGICAL-c4555-19d41de3454b7caf76d060c1dc6dfd65551d878510ff4c526d113d7bbf46669f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1633105$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1633105$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14761030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cygler, J. E.</creatorcontrib><creatorcontrib>Daskalov, G. M.</creatorcontrib><creatorcontrib>Chan, G. H.</creatorcontrib><creatorcontrib>Ding, G. X.</creatorcontrib><title>Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>The purpose of this study is to perform a clinical evaluation of the first commercial (MDS Nordion, now Nucletron) treatment planning system for electron beams incorporating Monte Carlo dose calculation module. This software implements Kawrakow’s
VMC
++
voxel-based Monte Carlo calculation algorithm. The accuracy of the dose distribution calculations is evaluated by direct comparisons with extensive sets of measured data in homogeneous and heterogeneous phantoms at different source-to-surface distances (SSDs) and gantry angles. We also verify the accuracy of the Monte Carlo module for monitor unit calculations in comparison with independent hand calculations for homogeneous water phantom at two different SSDs. All electron beams in the range 6–20 MeV are from a Siemens KD-2 linear accelerator. We used 10 000 or 50 000
histories/cm
2
in our Monte Carlo calculations, which led to about 2.5% and 1% relative standard error of the mean of the calculated dose. The dose calculation time depends on the number of histories, the number of voxels used to map the patient anatomy, the field size, and the beam energy. The typical run time of the Monte Carlo calculations
(10 000
histories/cm
2
)
is 1.02 min on a 2.2 GHz Pentium 4 Xeon computer for a 9 MeV beam,
10×10
cm
2
field size, incident on the phantom
15×15×10
cm
3
consisting of 31 CT slices and voxels size of
3×3×3
mm
3
(total of 486 720 voxels). We find good agreement (discrepancies smaller than 5%) for most of the tested dose distributions. We also find excellent agreement (discrepancies of 2.5% or less) for the monitor unit calculations relative to the independent manual calculations. The accuracy of monitor unit calculations does not depend on the SSD used, which allows the use of one virtual machine for each beam energy for all arbitrary SSDs. In some cases the test results are found to be sensitive to the voxel size applied such that bigger systematic errors
(>5%)
occur when large voxel sizes interfere with the extensions of heterogeneities or dose gradients because of differences between the experimental and calculated geometries. Therefore, user control over voxelization is important for high accuracy electron dose calculations.</description><subject>Algorithms</subject><subject>Anatomy</subject><subject>Ancillary equipment</subject><subject>Computer simulation</subject><subject>Computer software</subject><subject>dosimetry</subject><subject>Dosimetry/exposure assessment</subject><subject>electron beam</subject><subject>electron beam applications</subject><subject>Electron beams</subject><subject>Electrons</subject><subject>Field size</subject><subject>inhomogeneous phantoms</subject><subject>Linear accelerators</subject><subject>medical computing</subject><subject>Medical treatment planning</subject><subject>monitor unit calculations</subject><subject>Monte Carlo algorithms</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo treatment planning</subject><subject>Particle Accelerators - instrumentation</subject><subject>phantoms</subject><subject>Phantoms, Imaging</subject><subject>Physicists</subject><subject>planning</subject><subject>radiation therapy</subject><subject>Radiotherapy, Conformal - instrumentation</subject><subject>Scattering, Radiation</subject><subject>Software</subject><subject>Statistical methods</subject><subject>Treatment strategy</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1u1TAQRq0KRG8Li75A5RUSSGk98U9uluiqUKRWsGjXkWOPi6kTX2ynVd-elESCTVmNNDrfmdFHyAmwMwDYnsMZKM6ByQOyqUXDK1Gz9hXZMNaKqhZMHpKjnH8yxhSX7A05BNEoYJxtyP3Fgw6TLj6ONDpafiB1PuVCTRwGTMbrQK_jWJDudAqR2piRGh3MFJYQjnd-nEMxUQxoSpp3PeqBloS6DDgWug96HP1495a8djpkfLfOY3L7-eJmd1ldffvydffpqjJCSllBawVY5EKKvjHaNcoyxQxYo6yzakbAbputBOacMLJWFoDbpu-dUEq1jh-T94t3n-KvCXPpBp8NhvkNjFPutgxELVoxgx8W0KSYc0LX7ZMfdHrqgHXPzXbQrc3O7OkqnfoB7V9yrXIGqgV49AGfXjZ1199X4ceFz8aXP13-9_qL8ENM_8j31vHfZKGdfg</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Cygler, J. E.</creator><creator>Daskalov, G. M.</creator><creator>Chan, G. H.</creator><creator>Ding, G. X.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200401</creationdate><title>Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning</title><author>Cygler, J. E. ; Daskalov, G. M. ; Chan, G. H. ; Ding, G. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4555-19d41de3454b7caf76d060c1dc6dfd65551d878510ff4c526d113d7bbf46669f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Anatomy</topic><topic>Ancillary equipment</topic><topic>Computer simulation</topic><topic>Computer software</topic><topic>dosimetry</topic><topic>Dosimetry/exposure assessment</topic><topic>electron beam</topic><topic>electron beam applications</topic><topic>Electron beams</topic><topic>Electrons</topic><topic>Field size</topic><topic>inhomogeneous phantoms</topic><topic>Linear accelerators</topic><topic>medical computing</topic><topic>Medical treatment planning</topic><topic>monitor unit calculations</topic><topic>Monte Carlo algorithms</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo treatment planning</topic><topic>Particle Accelerators - instrumentation</topic><topic>phantoms</topic><topic>Phantoms, Imaging</topic><topic>Physicists</topic><topic>planning</topic><topic>radiation therapy</topic><topic>Radiotherapy, Conformal - instrumentation</topic><topic>Scattering, Radiation</topic><topic>Software</topic><topic>Statistical methods</topic><topic>Treatment strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cygler, J. E.</creatorcontrib><creatorcontrib>Daskalov, G. M.</creatorcontrib><creatorcontrib>Chan, G. H.</creatorcontrib><creatorcontrib>Ding, G. X.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cygler, J. E.</au><au>Daskalov, G. M.</au><au>Chan, G. H.</au><au>Ding, G. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2004-01</date><risdate>2004</risdate><volume>31</volume><issue>1</issue><spage>142</spage><epage>153</epage><pages>142-153</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>The purpose of this study is to perform a clinical evaluation of the first commercial (MDS Nordion, now Nucletron) treatment planning system for electron beams incorporating Monte Carlo dose calculation module. This software implements Kawrakow’s
VMC
++
voxel-based Monte Carlo calculation algorithm. The accuracy of the dose distribution calculations is evaluated by direct comparisons with extensive sets of measured data in homogeneous and heterogeneous phantoms at different source-to-surface distances (SSDs) and gantry angles. We also verify the accuracy of the Monte Carlo module for monitor unit calculations in comparison with independent hand calculations for homogeneous water phantom at two different SSDs. All electron beams in the range 6–20 MeV are from a Siemens KD-2 linear accelerator. We used 10 000 or 50 000
histories/cm
2
in our Monte Carlo calculations, which led to about 2.5% and 1% relative standard error of the mean of the calculated dose. The dose calculation time depends on the number of histories, the number of voxels used to map the patient anatomy, the field size, and the beam energy. The typical run time of the Monte Carlo calculations
(10 000
histories/cm
2
)
is 1.02 min on a 2.2 GHz Pentium 4 Xeon computer for a 9 MeV beam,
10×10
cm
2
field size, incident on the phantom
15×15×10
cm
3
consisting of 31 CT slices and voxels size of
3×3×3
mm
3
(total of 486 720 voxels). We find good agreement (discrepancies smaller than 5%) for most of the tested dose distributions. We also find excellent agreement (discrepancies of 2.5% or less) for the monitor unit calculations relative to the independent manual calculations. The accuracy of monitor unit calculations does not depend on the SSD used, which allows the use of one virtual machine for each beam energy for all arbitrary SSDs. In some cases the test results are found to be sensitive to the voxel size applied such that bigger systematic errors
(>5%)
occur when large voxel sizes interfere with the extensions of heterogeneities or dose gradients because of differences between the experimental and calculated geometries. Therefore, user control over voxelization is important for high accuracy electron dose calculations.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>14761030</pmid><doi>10.1118/1.1633105</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2004-01, Vol.31 (1), p.142-153 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_proquest_miscellaneous_80142494 |
source | MEDLINE; Wiley Journals |
subjects | Algorithms Anatomy Ancillary equipment Computer simulation Computer software dosimetry Dosimetry/exposure assessment electron beam electron beam applications Electron beams Electrons Field size inhomogeneous phantoms Linear accelerators medical computing Medical treatment planning monitor unit calculations Monte Carlo algorithms Monte Carlo Method Monte Carlo methods Monte Carlo treatment planning Particle Accelerators - instrumentation phantoms Phantoms, Imaging Physicists planning radiation therapy Radiotherapy, Conformal - instrumentation Scattering, Radiation Software Statistical methods Treatment strategy |
title | Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20first%20commercial%20Monte%20Carlo%20dose%20calculation%20engine%20for%20electron%20beam%20treatment%20planning&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Cygler,%20J.%20E.&rft.date=2004-01&rft.volume=31&rft.issue=1&rft.spage=142&rft.epage=153&rft.pages=142-153&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1633105&rft_dat=%3Cproquest_pubme%3E80142494%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80142494&rft_id=info:pmid/14761030&rfr_iscdi=true |