Microbioreactor arrays with parametric control for high-throughput experimentation

A scalable array technology for parametric control of high‐throughput cell cultivations is demonstrated. The technology makes use of commercial printed circuit board (PCB) technology, integrated circuit sensors, and an electrochemical gas generation system. We present results for an array of eight 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2004-02, Vol.85 (4), p.376-381
Hauptverfasser: Maharbiz, Michel M., Holtz, William J., Howe, Roger T., Keasling, Jay D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue 4
container_start_page 376
container_title Biotechnology and bioengineering
container_volume 85
creator Maharbiz, Michel M.
Holtz, William J.
Howe, Roger T.
Keasling, Jay D.
description A scalable array technology for parametric control of high‐throughput cell cultivations is demonstrated. The technology makes use of commercial printed circuit board (PCB) technology, integrated circuit sensors, and an electrochemical gas generation system. We present results for an array of eight 250 μl microbioreactors. Each bioreactor contains an independently addressable suite that provides closed‐loop temperature control, generates feed gas electrochemically, and continuously monitors optical density. The PCB technology allows for the assembly of additional off‐the‐shelf components into the microbioreactor array; we demonstrate the use of a commercial ISFET chip to continuously monitor culture pH. The electrochemical dosing system provides a powerful paradigm for reproducible gas delivery to high‐density arrays of microreactors. Growth data are presented for Escherichia coli cultured in the array with varying microaerobic conditions using electrochemically generated oxygen. Additionally, we present data on carbon dioxide generation for pH dosing. © 2003 Wiley Periodicals, Inc.
doi_str_mv 10.1002/bit.10835
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80137380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17901405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4275-dcda6f55be2e8963017a02522c99d0f942f5291a8099010f7d503bf8bf26194b3</originalsourceid><addsrcrecordid>eNqFkE9P5CAYh4nZjY5_Dn4B09MmHrq-QCnlqEYdE12j0eiN0BYsa2eoQKPz7cWdcT0ZuQDJ8_u9eR-EdjH8xgDkoLYxPSrK1tAEg-A5EAE_0AQAypwyQTbQZgh_05dXZbmONnDB2fuZoJtL23hXW-e1aqLzmfJeLUL2YmOXDcqrmY7eNlnj5tG7PjMJ6exjl8fOu_GxG8aY6ddBezvT86iidfNt9NOoPuid1b2F7k5Pbo-n-cXV2fnx4UXeFISzvG1aVRrGak10JUoKmCsgjJBGiBaMKIhhRGBVgRCAwfCWAa1NVRtSYlHUdAv9WvYO3j2POkQ5s6HRfa_m2o1BVoAppxV8C2KeBhTAEri_BJOSELw2ckh7Kb-QGOS7aZlMy3-mE7u3Kh3rmW4_yZXaBBwsgRfb68XXTfLo_PajMl8mbIj69X9C-SdZcsqZvP9zJvn90XRaXFfygb4BbVWXjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17901405</pqid></control><display><type>article</type><title>Microbioreactor arrays with parametric control for high-throughput experimentation</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Maharbiz, Michel M. ; Holtz, William J. ; Howe, Roger T. ; Keasling, Jay D.</creator><creatorcontrib>Maharbiz, Michel M. ; Holtz, William J. ; Howe, Roger T. ; Keasling, Jay D.</creatorcontrib><description>A scalable array technology for parametric control of high‐throughput cell cultivations is demonstrated. The technology makes use of commercial printed circuit board (PCB) technology, integrated circuit sensors, and an electrochemical gas generation system. We present results for an array of eight 250 μl microbioreactors. Each bioreactor contains an independently addressable suite that provides closed‐loop temperature control, generates feed gas electrochemically, and continuously monitors optical density. The PCB technology allows for the assembly of additional off‐the‐shelf components into the microbioreactor array; we demonstrate the use of a commercial ISFET chip to continuously monitor culture pH. The electrochemical dosing system provides a powerful paradigm for reproducible gas delivery to high‐density arrays of microreactors. Growth data are presented for Escherichia coli cultured in the array with varying microaerobic conditions using electrochemically generated oxygen. Additionally, we present data on carbon dioxide generation for pH dosing. © 2003 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.10835</identifier><identifier>PMID: 14755555</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Bioreactors - microbiology ; Cell Culture Techniques - instrumentation ; Cell Culture Techniques - methods ; electrochemical gas generation ; Electrochemistry - instrumentation ; Electrochemistry - methods ; Electrodes ; Equipment Design ; Equipment Failure Analysis ; Escherichia coli ; Escherichia coli - growth &amp; development ; Escherichia coli - metabolism ; Feedback - physiology ; fermentation ; Hydrogen-Ion Concentration ; microbioreactor ; Miniaturization - methods ; Oxygen - metabolism ; parameter optimization ; Temperature</subject><ispartof>Biotechnology and bioengineering, 2004-02, Vol.85 (4), p.376-381</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><rights>Copyright 2003 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4275-dcda6f55be2e8963017a02522c99d0f942f5291a8099010f7d503bf8bf26194b3</citedby><cites>FETCH-LOGICAL-c4275-dcda6f55be2e8963017a02522c99d0f942f5291a8099010f7d503bf8bf26194b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.10835$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.10835$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14755555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maharbiz, Michel M.</creatorcontrib><creatorcontrib>Holtz, William J.</creatorcontrib><creatorcontrib>Howe, Roger T.</creatorcontrib><creatorcontrib>Keasling, Jay D.</creatorcontrib><title>Microbioreactor arrays with parametric control for high-throughput experimentation</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>A scalable array technology for parametric control of high‐throughput cell cultivations is demonstrated. The technology makes use of commercial printed circuit board (PCB) technology, integrated circuit sensors, and an electrochemical gas generation system. We present results for an array of eight 250 μl microbioreactors. Each bioreactor contains an independently addressable suite that provides closed‐loop temperature control, generates feed gas electrochemically, and continuously monitors optical density. The PCB technology allows for the assembly of additional off‐the‐shelf components into the microbioreactor array; we demonstrate the use of a commercial ISFET chip to continuously monitor culture pH. The electrochemical dosing system provides a powerful paradigm for reproducible gas delivery to high‐density arrays of microreactors. Growth data are presented for Escherichia coli cultured in the array with varying microaerobic conditions using electrochemically generated oxygen. Additionally, we present data on carbon dioxide generation for pH dosing. © 2003 Wiley Periodicals, Inc.</description><subject>Bioreactors - microbiology</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Culture Techniques - methods</subject><subject>electrochemical gas generation</subject><subject>Electrochemistry - instrumentation</subject><subject>Electrochemistry - methods</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Escherichia coli</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - metabolism</subject><subject>Feedback - physiology</subject><subject>fermentation</subject><subject>Hydrogen-Ion Concentration</subject><subject>microbioreactor</subject><subject>Miniaturization - methods</subject><subject>Oxygen - metabolism</subject><subject>parameter optimization</subject><subject>Temperature</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9P5CAYh4nZjY5_Dn4B09MmHrq-QCnlqEYdE12j0eiN0BYsa2eoQKPz7cWdcT0ZuQDJ8_u9eR-EdjH8xgDkoLYxPSrK1tAEg-A5EAE_0AQAypwyQTbQZgh_05dXZbmONnDB2fuZoJtL23hXW-e1aqLzmfJeLUL2YmOXDcqrmY7eNlnj5tG7PjMJ6exjl8fOu_GxG8aY6ddBezvT86iidfNt9NOoPuid1b2F7k5Pbo-n-cXV2fnx4UXeFISzvG1aVRrGak10JUoKmCsgjJBGiBaMKIhhRGBVgRCAwfCWAa1NVRtSYlHUdAv9WvYO3j2POkQ5s6HRfa_m2o1BVoAppxV8C2KeBhTAEri_BJOSELw2ckh7Kb-QGOS7aZlMy3-mE7u3Kh3rmW4_yZXaBBwsgRfb68XXTfLo_PajMl8mbIj69X9C-SdZcsqZvP9zJvn90XRaXFfygb4BbVWXjg</recordid><startdate>20040220</startdate><enddate>20040220</enddate><creator>Maharbiz, Michel M.</creator><creator>Holtz, William J.</creator><creator>Howe, Roger T.</creator><creator>Keasling, Jay D.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040220</creationdate><title>Microbioreactor arrays with parametric control for high-throughput experimentation</title><author>Maharbiz, Michel M. ; Holtz, William J. ; Howe, Roger T. ; Keasling, Jay D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4275-dcda6f55be2e8963017a02522c99d0f942f5291a8099010f7d503bf8bf26194b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bioreactors - microbiology</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Culture Techniques - methods</topic><topic>electrochemical gas generation</topic><topic>Electrochemistry - instrumentation</topic><topic>Electrochemistry - methods</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Escherichia coli</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - metabolism</topic><topic>Feedback - physiology</topic><topic>fermentation</topic><topic>Hydrogen-Ion Concentration</topic><topic>microbioreactor</topic><topic>Miniaturization - methods</topic><topic>Oxygen - metabolism</topic><topic>parameter optimization</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maharbiz, Michel M.</creatorcontrib><creatorcontrib>Holtz, William J.</creatorcontrib><creatorcontrib>Howe, Roger T.</creatorcontrib><creatorcontrib>Keasling, Jay D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maharbiz, Michel M.</au><au>Holtz, William J.</au><au>Howe, Roger T.</au><au>Keasling, Jay D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbioreactor arrays with parametric control for high-throughput experimentation</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2004-02-20</date><risdate>2004</risdate><volume>85</volume><issue>4</issue><spage>376</spage><epage>381</epage><pages>376-381</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>A scalable array technology for parametric control of high‐throughput cell cultivations is demonstrated. The technology makes use of commercial printed circuit board (PCB) technology, integrated circuit sensors, and an electrochemical gas generation system. We present results for an array of eight 250 μl microbioreactors. Each bioreactor contains an independently addressable suite that provides closed‐loop temperature control, generates feed gas electrochemically, and continuously monitors optical density. The PCB technology allows for the assembly of additional off‐the‐shelf components into the microbioreactor array; we demonstrate the use of a commercial ISFET chip to continuously monitor culture pH. The electrochemical dosing system provides a powerful paradigm for reproducible gas delivery to high‐density arrays of microreactors. Growth data are presented for Escherichia coli cultured in the array with varying microaerobic conditions using electrochemically generated oxygen. Additionally, we present data on carbon dioxide generation for pH dosing. © 2003 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>14755555</pmid><doi>10.1002/bit.10835</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2004-02, Vol.85 (4), p.376-381
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_80137380
source MEDLINE; Access via Wiley Online Library
subjects Bioreactors - microbiology
Cell Culture Techniques - instrumentation
Cell Culture Techniques - methods
electrochemical gas generation
Electrochemistry - instrumentation
Electrochemistry - methods
Electrodes
Equipment Design
Equipment Failure Analysis
Escherichia coli
Escherichia coli - growth & development
Escherichia coli - metabolism
Feedback - physiology
fermentation
Hydrogen-Ion Concentration
microbioreactor
Miniaturization - methods
Oxygen - metabolism
parameter optimization
Temperature
title Microbioreactor arrays with parametric control for high-throughput experimentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbioreactor%20arrays%20with%20parametric%20control%20for%20high-throughput%20experimentation&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Maharbiz,%20Michel%20M.&rft.date=2004-02-20&rft.volume=85&rft.issue=4&rft.spage=376&rft.epage=381&rft.pages=376-381&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.10835&rft_dat=%3Cproquest_cross%3E17901405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17901405&rft_id=info:pmid/14755555&rfr_iscdi=true