Microbioreactor arrays with parametric control for high-throughput experimentation
A scalable array technology for parametric control of high‐throughput cell cultivations is demonstrated. The technology makes use of commercial printed circuit board (PCB) technology, integrated circuit sensors, and an electrochemical gas generation system. We present results for an array of eight 2...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2004-02, Vol.85 (4), p.376-381 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | 4 |
container_start_page | 376 |
container_title | Biotechnology and bioengineering |
container_volume | 85 |
creator | Maharbiz, Michel M. Holtz, William J. Howe, Roger T. Keasling, Jay D. |
description | A scalable array technology for parametric control of high‐throughput cell cultivations is demonstrated. The technology makes use of commercial printed circuit board (PCB) technology, integrated circuit sensors, and an electrochemical gas generation system. We present results for an array of eight 250 μl microbioreactors. Each bioreactor contains an independently addressable suite that provides closed‐loop temperature control, generates feed gas electrochemically, and continuously monitors optical density. The PCB technology allows for the assembly of additional off‐the‐shelf components into the microbioreactor array; we demonstrate the use of a commercial ISFET chip to continuously monitor culture pH. The electrochemical dosing system provides a powerful paradigm for reproducible gas delivery to high‐density arrays of microreactors. Growth data are presented for Escherichia coli cultured in the array with varying microaerobic conditions using electrochemically generated oxygen. Additionally, we present data on carbon dioxide generation for pH dosing. © 2003 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/bit.10835 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80137380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17901405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4275-dcda6f55be2e8963017a02522c99d0f942f5291a8099010f7d503bf8bf26194b3</originalsourceid><addsrcrecordid>eNqFkE9P5CAYh4nZjY5_Dn4B09MmHrq-QCnlqEYdE12j0eiN0BYsa2eoQKPz7cWdcT0ZuQDJ8_u9eR-EdjH8xgDkoLYxPSrK1tAEg-A5EAE_0AQAypwyQTbQZgh_05dXZbmONnDB2fuZoJtL23hXW-e1aqLzmfJeLUL2YmOXDcqrmY7eNlnj5tG7PjMJ6exjl8fOu_GxG8aY6ddBezvT86iidfNt9NOoPuid1b2F7k5Pbo-n-cXV2fnx4UXeFISzvG1aVRrGak10JUoKmCsgjJBGiBaMKIhhRGBVgRCAwfCWAa1NVRtSYlHUdAv9WvYO3j2POkQ5s6HRfa_m2o1BVoAppxV8C2KeBhTAEri_BJOSELw2ckh7Kb-QGOS7aZlMy3-mE7u3Kh3rmW4_yZXaBBwsgRfb68XXTfLo_PajMl8mbIj69X9C-SdZcsqZvP9zJvn90XRaXFfygb4BbVWXjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17901405</pqid></control><display><type>article</type><title>Microbioreactor arrays with parametric control for high-throughput experimentation</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Maharbiz, Michel M. ; Holtz, William J. ; Howe, Roger T. ; Keasling, Jay D.</creator><creatorcontrib>Maharbiz, Michel M. ; Holtz, William J. ; Howe, Roger T. ; Keasling, Jay D.</creatorcontrib><description>A scalable array technology for parametric control of high‐throughput cell cultivations is demonstrated. The technology makes use of commercial printed circuit board (PCB) technology, integrated circuit sensors, and an electrochemical gas generation system. We present results for an array of eight 250 μl microbioreactors. Each bioreactor contains an independently addressable suite that provides closed‐loop temperature control, generates feed gas electrochemically, and continuously monitors optical density. The PCB technology allows for the assembly of additional off‐the‐shelf components into the microbioreactor array; we demonstrate the use of a commercial ISFET chip to continuously monitor culture pH. The electrochemical dosing system provides a powerful paradigm for reproducible gas delivery to high‐density arrays of microreactors. Growth data are presented for Escherichia coli cultured in the array with varying microaerobic conditions using electrochemically generated oxygen. Additionally, we present data on carbon dioxide generation for pH dosing. © 2003 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.10835</identifier><identifier>PMID: 14755555</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Bioreactors - microbiology ; Cell Culture Techniques - instrumentation ; Cell Culture Techniques - methods ; electrochemical gas generation ; Electrochemistry - instrumentation ; Electrochemistry - methods ; Electrodes ; Equipment Design ; Equipment Failure Analysis ; Escherichia coli ; Escherichia coli - growth & development ; Escherichia coli - metabolism ; Feedback - physiology ; fermentation ; Hydrogen-Ion Concentration ; microbioreactor ; Miniaturization - methods ; Oxygen - metabolism ; parameter optimization ; Temperature</subject><ispartof>Biotechnology and bioengineering, 2004-02, Vol.85 (4), p.376-381</ispartof><rights>Copyright © 2003 Wiley Periodicals, Inc.</rights><rights>Copyright 2003 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4275-dcda6f55be2e8963017a02522c99d0f942f5291a8099010f7d503bf8bf26194b3</citedby><cites>FETCH-LOGICAL-c4275-dcda6f55be2e8963017a02522c99d0f942f5291a8099010f7d503bf8bf26194b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.10835$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.10835$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14755555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maharbiz, Michel M.</creatorcontrib><creatorcontrib>Holtz, William J.</creatorcontrib><creatorcontrib>Howe, Roger T.</creatorcontrib><creatorcontrib>Keasling, Jay D.</creatorcontrib><title>Microbioreactor arrays with parametric control for high-throughput experimentation</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>A scalable array technology for parametric control of high‐throughput cell cultivations is demonstrated. The technology makes use of commercial printed circuit board (PCB) technology, integrated circuit sensors, and an electrochemical gas generation system. We present results for an array of eight 250 μl microbioreactors. Each bioreactor contains an independently addressable suite that provides closed‐loop temperature control, generates feed gas electrochemically, and continuously monitors optical density. The PCB technology allows for the assembly of additional off‐the‐shelf components into the microbioreactor array; we demonstrate the use of a commercial ISFET chip to continuously monitor culture pH. The electrochemical dosing system provides a powerful paradigm for reproducible gas delivery to high‐density arrays of microreactors. Growth data are presented for Escherichia coli cultured in the array with varying microaerobic conditions using electrochemically generated oxygen. Additionally, we present data on carbon dioxide generation for pH dosing. © 2003 Wiley Periodicals, Inc.</description><subject>Bioreactors - microbiology</subject><subject>Cell Culture Techniques - instrumentation</subject><subject>Cell Culture Techniques - methods</subject><subject>electrochemical gas generation</subject><subject>Electrochemistry - instrumentation</subject><subject>Electrochemistry - methods</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Escherichia coli</subject><subject>Escherichia coli - growth & development</subject><subject>Escherichia coli - metabolism</subject><subject>Feedback - physiology</subject><subject>fermentation</subject><subject>Hydrogen-Ion Concentration</subject><subject>microbioreactor</subject><subject>Miniaturization - methods</subject><subject>Oxygen - metabolism</subject><subject>parameter optimization</subject><subject>Temperature</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9P5CAYh4nZjY5_Dn4B09MmHrq-QCnlqEYdE12j0eiN0BYsa2eoQKPz7cWdcT0ZuQDJ8_u9eR-EdjH8xgDkoLYxPSrK1tAEg-A5EAE_0AQAypwyQTbQZgh_05dXZbmONnDB2fuZoJtL23hXW-e1aqLzmfJeLUL2YmOXDcqrmY7eNlnj5tG7PjMJ6exjl8fOu_GxG8aY6ddBezvT86iidfNt9NOoPuid1b2F7k5Pbo-n-cXV2fnx4UXeFISzvG1aVRrGak10JUoKmCsgjJBGiBaMKIhhRGBVgRCAwfCWAa1NVRtSYlHUdAv9WvYO3j2POkQ5s6HRfa_m2o1BVoAppxV8C2KeBhTAEri_BJOSELw2ckh7Kb-QGOS7aZlMy3-mE7u3Kh3rmW4_yZXaBBwsgRfb68XXTfLo_PajMl8mbIj69X9C-SdZcsqZvP9zJvn90XRaXFfygb4BbVWXjg</recordid><startdate>20040220</startdate><enddate>20040220</enddate><creator>Maharbiz, Michel M.</creator><creator>Holtz, William J.</creator><creator>Howe, Roger T.</creator><creator>Keasling, Jay D.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040220</creationdate><title>Microbioreactor arrays with parametric control for high-throughput experimentation</title><author>Maharbiz, Michel M. ; Holtz, William J. ; Howe, Roger T. ; Keasling, Jay D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4275-dcda6f55be2e8963017a02522c99d0f942f5291a8099010f7d503bf8bf26194b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bioreactors - microbiology</topic><topic>Cell Culture Techniques - instrumentation</topic><topic>Cell Culture Techniques - methods</topic><topic>electrochemical gas generation</topic><topic>Electrochemistry - instrumentation</topic><topic>Electrochemistry - methods</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Escherichia coli</topic><topic>Escherichia coli - growth & development</topic><topic>Escherichia coli - metabolism</topic><topic>Feedback - physiology</topic><topic>fermentation</topic><topic>Hydrogen-Ion Concentration</topic><topic>microbioreactor</topic><topic>Miniaturization - methods</topic><topic>Oxygen - metabolism</topic><topic>parameter optimization</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maharbiz, Michel M.</creatorcontrib><creatorcontrib>Holtz, William J.</creatorcontrib><creatorcontrib>Howe, Roger T.</creatorcontrib><creatorcontrib>Keasling, Jay D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maharbiz, Michel M.</au><au>Holtz, William J.</au><au>Howe, Roger T.</au><au>Keasling, Jay D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbioreactor arrays with parametric control for high-throughput experimentation</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2004-02-20</date><risdate>2004</risdate><volume>85</volume><issue>4</issue><spage>376</spage><epage>381</epage><pages>376-381</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><abstract>A scalable array technology for parametric control of high‐throughput cell cultivations is demonstrated. The technology makes use of commercial printed circuit board (PCB) technology, integrated circuit sensors, and an electrochemical gas generation system. We present results for an array of eight 250 μl microbioreactors. Each bioreactor contains an independently addressable suite that provides closed‐loop temperature control, generates feed gas electrochemically, and continuously monitors optical density. The PCB technology allows for the assembly of additional off‐the‐shelf components into the microbioreactor array; we demonstrate the use of a commercial ISFET chip to continuously monitor culture pH. The electrochemical dosing system provides a powerful paradigm for reproducible gas delivery to high‐density arrays of microreactors. Growth data are presented for Escherichia coli cultured in the array with varying microaerobic conditions using electrochemically generated oxygen. Additionally, we present data on carbon dioxide generation for pH dosing. © 2003 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>14755555</pmid><doi>10.1002/bit.10835</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2004-02, Vol.85 (4), p.376-381 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_80137380 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Bioreactors - microbiology Cell Culture Techniques - instrumentation Cell Culture Techniques - methods electrochemical gas generation Electrochemistry - instrumentation Electrochemistry - methods Electrodes Equipment Design Equipment Failure Analysis Escherichia coli Escherichia coli - growth & development Escherichia coli - metabolism Feedback - physiology fermentation Hydrogen-Ion Concentration microbioreactor Miniaturization - methods Oxygen - metabolism parameter optimization Temperature |
title | Microbioreactor arrays with parametric control for high-throughput experimentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbioreactor%20arrays%20with%20parametric%20control%20for%20high-throughput%20experimentation&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Maharbiz,%20Michel%20M.&rft.date=2004-02-20&rft.volume=85&rft.issue=4&rft.spage=376&rft.epage=381&rft.pages=376-381&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.10835&rft_dat=%3Cproquest_cross%3E17901405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17901405&rft_id=info:pmid/14755555&rfr_iscdi=true |