FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly
Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite t...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2004-02, Vol.6 (2), p.154-161 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 161 |
---|---|
container_issue | 2 |
container_start_page | 154 |
container_title | Nature cell biology |
container_volume | 6 |
creator | Webb, Donna J. Donais, Karen Whitmore, Leanna A. Thomas, Sheila M. Turner, Christopher E. Parsons, J. Thomas Horwitz, Alan F. |
description | Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration. |
doi_str_mv | 10.1038/ncb1094 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_80136661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183288182</galeid><sourcerecordid>A183288182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-3f8096befc18832bc1c2537c580f918006ddbf0c720ce55747e471638c3a99ea3</originalsourceid><addsrcrecordid>eNpt0d1q2zAUAGAxNtauG3uDITZYV5g7_dmSL0Not5KMQbpdC1k-dlRsOZVsaO_2DnvDPUkVEigplS4kjr5z0OEg9J6Sc0q4-uZtRUkpXqBjKmSRiUKWL7f3Is8kL9kRehPjDSFUCCJfo6OEBGeMHqPV5Wzx_--_62BxdK03Xed8i8d1GKZ2jTfmzm0jX_HFaoGNr_HP5XyBA7RTZ0aI2NRriG7wuHbRxAh91d2_Ra8a00V4tz9P0J_Li9_zH9ny1_er-WyZWcHVmPFGkbKooLFUKc4qSy3LubS5Ik1JFSFFXVcNsZIRC3kuhQQhacGV5aYswfAT9HlXdxOG2wniqHsXLXSd8TBMUStCeVEUNMGPT-DNMIXUa9QsrZJxlSf0aYda04F2vhnGYOy2op7R9D-lqGJJnT-j0q6hd3bw0LgUP0g4O0hIZoS7sTVTjPrqenVoT3fWhiHGAI3eBNebcK8p0dsx6_2Yk_yw72iqeqgf3X6uCXzZgZiefAvhseWntR4ACAasUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222292385</pqid></control><display><type>article</type><title>FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly</title><source>Nature_系列刊</source><source>MEDLINE</source><source>SpringerLink_现刊</source><creator>Webb, Donna J. ; Donais, Karen ; Whitmore, Leanna A. ; Thomas, Sheila M. ; Turner, Christopher E. ; Parsons, J. Thomas ; Horwitz, Alan F.</creator><creatorcontrib>Webb, Donna J. ; Donais, Karen ; Whitmore, Leanna A. ; Thomas, Sheila M. ; Turner, Christopher E. ; Parsons, J. Thomas ; Horwitz, Alan F.</creatorcontrib><description>Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1094</identifier><identifier>PMID: 14743221</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adaptor Proteins, Vesicular Transport - metabolism ; Adhesion ; Animals ; Biomedical and Life Sciences ; Cancer Research ; Cell Adhesion - physiology ; Cell adhesion molecules ; Cell Biology ; Cell Movement - physiology ; Cellular signal transduction ; Crk-Associated Substrate Protein ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Developmental Biology ; Fibroblasts - cytology ; Fibroblasts - physiology ; Focal Adhesion Kinase 1 ; Focal Adhesion Protein-Tyrosine Kinases ; Genetic aspects ; letter ; Life Sciences ; Mice ; Mitogen-Activated Protein Kinases - genetics ; Mitogen-Activated Protein Kinases - metabolism ; Myosin-Light-Chain Kinase - genetics ; Myosin-Light-Chain Kinase - metabolism ; Paxillin ; Phosphoproteins - genetics ; Phosphoproteins - metabolism ; Physiological aspects ; Protein kinases ; Protein-Tyrosine Kinases - genetics ; Protein-Tyrosine Kinases - metabolism ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Retinoblastoma-Like Protein p130 ; Signal Transduction - physiology ; src-Family Kinases - genetics ; src-Family Kinases - metabolism ; Stem Cells</subject><ispartof>Nature cell biology, 2004-02, Vol.6 (2), p.154-161</ispartof><rights>Springer Nature Limited 2004</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-3f8096befc18832bc1c2537c580f918006ddbf0c720ce55747e471638c3a99ea3</citedby><cites>FETCH-LOGICAL-c438t-3f8096befc18832bc1c2537c580f918006ddbf0c720ce55747e471638c3a99ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb1094$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb1094$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14743221$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Webb, Donna J.</creatorcontrib><creatorcontrib>Donais, Karen</creatorcontrib><creatorcontrib>Whitmore, Leanna A.</creatorcontrib><creatorcontrib>Thomas, Sheila M.</creatorcontrib><creatorcontrib>Turner, Christopher E.</creatorcontrib><creatorcontrib>Parsons, J. Thomas</creatorcontrib><creatorcontrib>Horwitz, Alan F.</creatorcontrib><title>FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration.</description><subject>Adaptor Proteins, Vesicular Transport - metabolism</subject><subject>Adhesion</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Adhesion - physiology</subject><subject>Cell adhesion molecules</subject><subject>Cell Biology</subject><subject>Cell Movement - physiology</subject><subject>Cellular signal transduction</subject><subject>Crk-Associated Substrate Protein</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Developmental Biology</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - physiology</subject><subject>Focal Adhesion Kinase 1</subject><subject>Focal Adhesion Protein-Tyrosine Kinases</subject><subject>Genetic aspects</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Myosin-Light-Chain Kinase - genetics</subject><subject>Myosin-Light-Chain Kinase - metabolism</subject><subject>Paxillin</subject><subject>Phosphoproteins - genetics</subject><subject>Phosphoproteins - metabolism</subject><subject>Physiological aspects</subject><subject>Protein kinases</subject><subject>Protein-Tyrosine Kinases - genetics</subject><subject>Protein-Tyrosine Kinases - metabolism</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Retinoblastoma-Like Protein p130</subject><subject>Signal Transduction - physiology</subject><subject>src-Family Kinases - genetics</subject><subject>src-Family Kinases - metabolism</subject><subject>Stem Cells</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpt0d1q2zAUAGAxNtauG3uDITZYV5g7_dmSL0Not5KMQbpdC1k-dlRsOZVsaO_2DnvDPUkVEigplS4kjr5z0OEg9J6Sc0q4-uZtRUkpXqBjKmSRiUKWL7f3Is8kL9kRehPjDSFUCCJfo6OEBGeMHqPV5Wzx_--_62BxdK03Xed8i8d1GKZ2jTfmzm0jX_HFaoGNr_HP5XyBA7RTZ0aI2NRriG7wuHbRxAh91d2_Ra8a00V4tz9P0J_Li9_zH9ny1_er-WyZWcHVmPFGkbKooLFUKc4qSy3LubS5Ik1JFSFFXVcNsZIRC3kuhQQhacGV5aYswfAT9HlXdxOG2wniqHsXLXSd8TBMUStCeVEUNMGPT-DNMIXUa9QsrZJxlSf0aYda04F2vhnGYOy2op7R9D-lqGJJnT-j0q6hd3bw0LgUP0g4O0hIZoS7sTVTjPrqenVoT3fWhiHGAI3eBNebcK8p0dsx6_2Yk_yw72iqeqgf3X6uCXzZgZiefAvhseWntR4ACAasUg</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Webb, Donna J.</creator><creator>Donais, Karen</creator><creator>Whitmore, Leanna A.</creator><creator>Thomas, Sheila M.</creator><creator>Turner, Christopher E.</creator><creator>Parsons, J. Thomas</creator><creator>Horwitz, Alan F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040201</creationdate><title>FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly</title><author>Webb, Donna J. ; Donais, Karen ; Whitmore, Leanna A. ; Thomas, Sheila M. ; Turner, Christopher E. ; Parsons, J. Thomas ; Horwitz, Alan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-3f8096befc18832bc1c2537c580f918006ddbf0c720ce55747e471638c3a99ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adaptor Proteins, Vesicular Transport - metabolism</topic><topic>Adhesion</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Adhesion - physiology</topic><topic>Cell adhesion molecules</topic><topic>Cell Biology</topic><topic>Cell Movement - physiology</topic><topic>Cellular signal transduction</topic><topic>Crk-Associated Substrate Protein</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Developmental Biology</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - physiology</topic><topic>Focal Adhesion Kinase 1</topic><topic>Focal Adhesion Protein-Tyrosine Kinases</topic><topic>Genetic aspects</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Myosin-Light-Chain Kinase - genetics</topic><topic>Myosin-Light-Chain Kinase - metabolism</topic><topic>Paxillin</topic><topic>Phosphoproteins - genetics</topic><topic>Phosphoproteins - metabolism</topic><topic>Physiological aspects</topic><topic>Protein kinases</topic><topic>Protein-Tyrosine Kinases - genetics</topic><topic>Protein-Tyrosine Kinases - metabolism</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Retinoblastoma-Like Protein p130</topic><topic>Signal Transduction - physiology</topic><topic>src-Family Kinases - genetics</topic><topic>src-Family Kinases - metabolism</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webb, Donna J.</creatorcontrib><creatorcontrib>Donais, Karen</creatorcontrib><creatorcontrib>Whitmore, Leanna A.</creatorcontrib><creatorcontrib>Thomas, Sheila M.</creatorcontrib><creatorcontrib>Turner, Christopher E.</creatorcontrib><creatorcontrib>Parsons, J. Thomas</creatorcontrib><creatorcontrib>Horwitz, Alan F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webb, Donna J.</au><au>Donais, Karen</au><au>Whitmore, Leanna A.</au><au>Thomas, Sheila M.</au><au>Turner, Christopher E.</au><au>Parsons, J. Thomas</au><au>Horwitz, Alan F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2004-02-01</date><risdate>2004</risdate><volume>6</volume><issue>2</issue><spage>154</spage><epage>161</epage><pages>154-161</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>14743221</pmid><doi>10.1038/ncb1094</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2004-02, Vol.6 (2), p.154-161 |
issn | 1465-7392 1476-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_80136661 |
source | Nature_系列刊; MEDLINE; SpringerLink_现刊 |
subjects | Adaptor Proteins, Vesicular Transport - metabolism Adhesion Animals Biomedical and Life Sciences Cancer Research Cell Adhesion - physiology Cell adhesion molecules Cell Biology Cell Movement - physiology Cellular signal transduction Crk-Associated Substrate Protein Cytoskeletal Proteins - genetics Cytoskeletal Proteins - metabolism Developmental Biology Fibroblasts - cytology Fibroblasts - physiology Focal Adhesion Kinase 1 Focal Adhesion Protein-Tyrosine Kinases Genetic aspects letter Life Sciences Mice Mitogen-Activated Protein Kinases - genetics Mitogen-Activated Protein Kinases - metabolism Myosin-Light-Chain Kinase - genetics Myosin-Light-Chain Kinase - metabolism Paxillin Phosphoproteins - genetics Phosphoproteins - metabolism Physiological aspects Protein kinases Protein-Tyrosine Kinases - genetics Protein-Tyrosine Kinases - metabolism Proteins Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Retinoblastoma-Like Protein p130 Signal Transduction - physiology src-Family Kinases - genetics src-Family Kinases - metabolism Stem Cells |
title | FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FAK%E2%80%93Src%20signalling%20through%20paxillin,%20ERK%20and%20MLCK%20regulates%20adhesion%20disassembly&rft.jtitle=Nature%20cell%20biology&rft.au=Webb,%20Donna%20J.&rft.date=2004-02-01&rft.volume=6&rft.issue=2&rft.spage=154&rft.epage=161&rft.pages=154-161&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1094&rft_dat=%3Cgale_proqu%3EA183288182%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222292385&rft_id=info:pmid/14743221&rft_galeid=A183288182&rfr_iscdi=true |