Nucleoid restructuring in stationary‐state bacteria
Summary The textbook view of the bacterial cytoplasm as an unstructured environment has been overturned recently by studies that highlighted the extent to which non‐random organization and coherent motion of intracellular components are central for bacterial life‐sustaining activities. Because such...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2004-01, Vol.51 (2), p.395-405 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 405 |
---|---|
container_issue | 2 |
container_start_page | 395 |
container_title | Molecular microbiology |
container_volume | 51 |
creator | Frenkiel‐Krispin, Daphna Ben‐Avraham, Irit Englander, Joseph Shimoni, Eyal Wolf, Sharon G. Minsky, Abraham |
description | Summary
The textbook view of the bacterial cytoplasm as an unstructured environment has been overturned recently by studies that highlighted the extent to which non‐random organization and coherent motion of intracellular components are central for bacterial life‐sustaining activities. Because such a dynamic order critically depends on continuous consumption of energy, it cannot be perpetuated in starved, and hence energy‐depleted, stationary‐state bacteria. Here, we show that, at the onset of the stationary state, bacterial chromatin undergoes a massive reorganization into ordered toroidal structures through a process that is dictated by the intrinsic properties of DNA and by the ubiquitous starvation‐induced DNA‐binding protein Dps. As starvation proceeds, the toroidal morphology acts as a structural template that promotes the formation of DNA–Dps crystalline assemblies through epitaxial growth. Within the resulting condensed assemblies, DNA is effectively protected by means of structural sequestration. We thus conclude that the transition from bacterial active growth to stationary phase entails a co‐ordinated process, in which the energy‐dependent dynamic order of the chromatin is sequentially substituted with an equilibrium crystalline order. |
doi_str_mv | 10.1046/j.1365-2958.2003.03855.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80132683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80132683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5195-5481aaad6f59f0deac4f88da61cae25b8c8795c629f45e515aa30095395c97b53</originalsourceid><addsrcrecordid>eNqNkc1O3DAUha2qqDNQXqGKKpVdgn9yHWfRRYX4kxjYUImddcdxKo8yydROBOx4BJ6RJ8FhIkZi065sX3_36txzCEkYzRjN5fEqY0JCyktQGadUZFQogOzhE5m_f3wmc1oCTYXidzOyH8KKUiaoFF_IjOUFyEKxOYHrwTS2c1Xibej9YPrBu_ZP4tok9Ni7rkX_-PL0PD5sskTTW-_wK9mrsQn2cDoPyO-z09uTi_Tq5vzy5NdVaoCVkEKuGCJWsoayppVFk9dKVSiZQcthqYwqSjCSl3UOFhggChpFi1gsiyWIA3K0nbvx3d8hCtRrF4xtGmxtNwSt4kZcKvFPkJVccslYBL9_AFfd4Nu4RGQkCFnwEVJbyPguBG9rvfFuHY3QjOoxAL3So8969FmPAei3APRDbP02zR-Wa1vtGifHI_BjAjAYbGqPrXFhxwFwURQ0cj-33L1r7ON_C9CLxeV4E6-T3KEP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196536721</pqid></control><display><type>article</type><title>Nucleoid restructuring in stationary‐state bacteria</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Frenkiel‐Krispin, Daphna ; Ben‐Avraham, Irit ; Englander, Joseph ; Shimoni, Eyal ; Wolf, Sharon G. ; Minsky, Abraham</creator><creatorcontrib>Frenkiel‐Krispin, Daphna ; Ben‐Avraham, Irit ; Englander, Joseph ; Shimoni, Eyal ; Wolf, Sharon G. ; Minsky, Abraham</creatorcontrib><description>Summary
The textbook view of the bacterial cytoplasm as an unstructured environment has been overturned recently by studies that highlighted the extent to which non‐random organization and coherent motion of intracellular components are central for bacterial life‐sustaining activities. Because such a dynamic order critically depends on continuous consumption of energy, it cannot be perpetuated in starved, and hence energy‐depleted, stationary‐state bacteria. Here, we show that, at the onset of the stationary state, bacterial chromatin undergoes a massive reorganization into ordered toroidal structures through a process that is dictated by the intrinsic properties of DNA and by the ubiquitous starvation‐induced DNA‐binding protein Dps. As starvation proceeds, the toroidal morphology acts as a structural template that promotes the formation of DNA–Dps crystalline assemblies through epitaxial growth. Within the resulting condensed assemblies, DNA is effectively protected by means of structural sequestration. We thus conclude that the transition from bacterial active growth to stationary phase entails a co‐ordinated process, in which the energy‐dependent dynamic order of the chromatin is sequentially substituted with an equilibrium crystalline order.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1046/j.1365-2958.2003.03855.x</identifier><identifier>PMID: 14756781</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Bacteriology ; Biological and medical sciences ; DNA, Bacterial - genetics ; DNA, Bacterial - ultrastructure ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - ultrastructure ; Dps protein ; Escherichia coli - genetics ; Escherichia coli - growth & development ; Escherichia coli - ultrastructure ; Fundamental and applied biological sciences. Psychology ; Image Processing, Computer-Assisted ; Microbiology ; Miscellaneous ; Tomography - methods</subject><ispartof>Molecular microbiology, 2004-01, Vol.51 (2), p.395-405</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright Blackwell Scientific Publications Ltd. Jan 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5195-5481aaad6f59f0deac4f88da61cae25b8c8795c629f45e515aa30095395c97b53</citedby><cites>FETCH-LOGICAL-c5195-5481aaad6f59f0deac4f88da61cae25b8c8795c629f45e515aa30095395c97b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2958.2003.03855.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2958.2003.03855.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,4010,27900,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15523770$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14756781$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frenkiel‐Krispin, Daphna</creatorcontrib><creatorcontrib>Ben‐Avraham, Irit</creatorcontrib><creatorcontrib>Englander, Joseph</creatorcontrib><creatorcontrib>Shimoni, Eyal</creatorcontrib><creatorcontrib>Wolf, Sharon G.</creatorcontrib><creatorcontrib>Minsky, Abraham</creatorcontrib><title>Nucleoid restructuring in stationary‐state bacteria</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
The textbook view of the bacterial cytoplasm as an unstructured environment has been overturned recently by studies that highlighted the extent to which non‐random organization and coherent motion of intracellular components are central for bacterial life‐sustaining activities. Because such a dynamic order critically depends on continuous consumption of energy, it cannot be perpetuated in starved, and hence energy‐depleted, stationary‐state bacteria. Here, we show that, at the onset of the stationary state, bacterial chromatin undergoes a massive reorganization into ordered toroidal structures through a process that is dictated by the intrinsic properties of DNA and by the ubiquitous starvation‐induced DNA‐binding protein Dps. As starvation proceeds, the toroidal morphology acts as a structural template that promotes the formation of DNA–Dps crystalline assemblies through epitaxial growth. Within the resulting condensed assemblies, DNA is effectively protected by means of structural sequestration. We thus conclude that the transition from bacterial active growth to stationary phase entails a co‐ordinated process, in which the energy‐dependent dynamic order of the chromatin is sequentially substituted with an equilibrium crystalline order.</description><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - ultrastructure</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - ultrastructure</subject><subject>Dps protein</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth & development</subject><subject>Escherichia coli - ultrastructure</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Image Processing, Computer-Assisted</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Tomography - methods</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1O3DAUha2qqDNQXqGKKpVdgn9yHWfRRYX4kxjYUImddcdxKo8yydROBOx4BJ6RJ8FhIkZi065sX3_36txzCEkYzRjN5fEqY0JCyktQGadUZFQogOzhE5m_f3wmc1oCTYXidzOyH8KKUiaoFF_IjOUFyEKxOYHrwTS2c1Xibej9YPrBu_ZP4tok9Ni7rkX_-PL0PD5sskTTW-_wK9mrsQn2cDoPyO-z09uTi_Tq5vzy5NdVaoCVkEKuGCJWsoayppVFk9dKVSiZQcthqYwqSjCSl3UOFhggChpFi1gsiyWIA3K0nbvx3d8hCtRrF4xtGmxtNwSt4kZcKvFPkJVccslYBL9_AFfd4Nu4RGQkCFnwEVJbyPguBG9rvfFuHY3QjOoxAL3So8969FmPAei3APRDbP02zR-Wa1vtGifHI_BjAjAYbGqPrXFhxwFwURQ0cj-33L1r7ON_C9CLxeV4E6-T3KEP</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Frenkiel‐Krispin, Daphna</creator><creator>Ben‐Avraham, Irit</creator><creator>Englander, Joseph</creator><creator>Shimoni, Eyal</creator><creator>Wolf, Sharon G.</creator><creator>Minsky, Abraham</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200401</creationdate><title>Nucleoid restructuring in stationary‐state bacteria</title><author>Frenkiel‐Krispin, Daphna ; Ben‐Avraham, Irit ; Englander, Joseph ; Shimoni, Eyal ; Wolf, Sharon G. ; Minsky, Abraham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5195-5481aaad6f59f0deac4f88da61cae25b8c8795c629f45e515aa30095395c97b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - ultrastructure</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - ultrastructure</topic><topic>Dps protein</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth & development</topic><topic>Escherichia coli - ultrastructure</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Image Processing, Computer-Assisted</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Tomography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frenkiel‐Krispin, Daphna</creatorcontrib><creatorcontrib>Ben‐Avraham, Irit</creatorcontrib><creatorcontrib>Englander, Joseph</creatorcontrib><creatorcontrib>Shimoni, Eyal</creatorcontrib><creatorcontrib>Wolf, Sharon G.</creatorcontrib><creatorcontrib>Minsky, Abraham</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frenkiel‐Krispin, Daphna</au><au>Ben‐Avraham, Irit</au><au>Englander, Joseph</au><au>Shimoni, Eyal</au><au>Wolf, Sharon G.</au><au>Minsky, Abraham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleoid restructuring in stationary‐state bacteria</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2004-01</date><risdate>2004</risdate><volume>51</volume><issue>2</issue><spage>395</spage><epage>405</epage><pages>395-405</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
The textbook view of the bacterial cytoplasm as an unstructured environment has been overturned recently by studies that highlighted the extent to which non‐random organization and coherent motion of intracellular components are central for bacterial life‐sustaining activities. Because such a dynamic order critically depends on continuous consumption of energy, it cannot be perpetuated in starved, and hence energy‐depleted, stationary‐state bacteria. Here, we show that, at the onset of the stationary state, bacterial chromatin undergoes a massive reorganization into ordered toroidal structures through a process that is dictated by the intrinsic properties of DNA and by the ubiquitous starvation‐induced DNA‐binding protein Dps. As starvation proceeds, the toroidal morphology acts as a structural template that promotes the formation of DNA–Dps crystalline assemblies through epitaxial growth. Within the resulting condensed assemblies, DNA is effectively protected by means of structural sequestration. We thus conclude that the transition from bacterial active growth to stationary phase entails a co‐ordinated process, in which the energy‐dependent dynamic order of the chromatin is sequentially substituted with an equilibrium crystalline order.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>14756781</pmid><doi>10.1046/j.1365-2958.2003.03855.x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2004-01, Vol.51 (2), p.395-405 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_80132683 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Bacteriology Biological and medical sciences DNA, Bacterial - genetics DNA, Bacterial - ultrastructure DNA-Binding Proteins - chemistry DNA-Binding Proteins - ultrastructure Dps protein Escherichia coli - genetics Escherichia coli - growth & development Escherichia coli - ultrastructure Fundamental and applied biological sciences. Psychology Image Processing, Computer-Assisted Microbiology Miscellaneous Tomography - methods |
title | Nucleoid restructuring in stationary‐state bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleoid%20restructuring%20in%20stationary%E2%80%90state%20bacteria&rft.jtitle=Molecular%20microbiology&rft.au=Frenkiel%E2%80%90Krispin,%20Daphna&rft.date=2004-01&rft.volume=51&rft.issue=2&rft.spage=395&rft.epage=405&rft.pages=395-405&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1046/j.1365-2958.2003.03855.x&rft_dat=%3Cproquest_cross%3E80132683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196536721&rft_id=info:pmid/14756781&rfr_iscdi=true |