New tools for mass isotopomer data evaluation in (13)C flux analysis: mass isotope correction, data consistency checking, and precursor relationships

13C metabolic flux analysis (MFA) is based on carbon-labeling experiments where a specifically (13)C labeled substrate is fed. The labeled carbon atoms distribute over the metabolic network and the label enrichment of certain metabolic pools is measured by using different methods. Recently, MS metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2004-02, Vol.85 (3), p.259-268
Hauptverfasser: Wahl, S Aljoscha, Dauner, Michael, Wiechert, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 3
container_start_page 259
container_title Biotechnology and bioengineering
container_volume 85
creator Wahl, S Aljoscha
Dauner, Michael
Wiechert, Wolfgang
description 13C metabolic flux analysis (MFA) is based on carbon-labeling experiments where a specifically (13)C labeled substrate is fed. The labeled carbon atoms distribute over the metabolic network and the label enrichment of certain metabolic pools is measured by using different methods. Recently, MS methods have been dramatically improved-large and precise datasets are now available. MS data has to be preprocessed and corrected for natural stable mass isotopes. In this article we present (1). a new elegant method to correct MS measurement data for natural stable mass isotopes by infinite dimensional matrix calculus and (2). we statistically analyze and discuss a reconstruction of labeling pattern in metabolic precursors from biosynthesis molecules. Moreover, we establish a new method for consistency checking of MS spectra that can be applied for automatic error recognition in high-throughput flux analysis procedures. Preprocessing the measurement data changes their statistical properties which have to be considered in the subsequent parameter fitting process for (13)C MFA. We show that correcting for stable mass isotopes leads to rather small correlations. On the other hand, a direct reconstruction of a precursor labeling pattern from an aromatic amino acid measurement turns out to be critical. Reasonable results are only obtained if additional, independent information about the labeling of at least one precursor is available. A versatile MatLab tool for the rapid correction and consistency checking of MS spectra is presented. Practical examples for the described methods are also given.
doi_str_mv 10.1002/bit.10909
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_80122914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80122914</sourcerecordid><originalsourceid>FETCH-LOGICAL-p122t-172e76215a62c6fef0e82cc7719b0bdd11c6e8377749d1246441f4d580afcb243</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRb0A0VJY8APIKwRSA7bj2gk7VPGSKtjAOnKcCTU4cbAdoB_C_5LSIrGaGence6RB6IiSc0oIuyhNHJac5DtoTAgRSTrL2Qjth_A6nDITYg-NKJc8IxkZo-8H-MTRORtw7TxuVAjYBBdd5xrwuFJRYfhQtlfRuBabFp_S9GyOa9t_YdUquwomXP7PAdbOe9Brfrop0K4dqAitXmG9BP1m2pfpkK5wN4C9D4PZg_1VhKXpwgHarZUNcLidE_R8c_00v0sWj7f386tF0lHGYkIlAykYnSnBtKihJpAxraWkeUnKqqJUC8hSKSXPK8q44JzWvJplRNW6ZDydoJNNb-fdew8hFo0JGqxVLbg-FBkZPDldg8dbsC8bqIrOm0b5VfH3yPQHp9h00w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80122914</pqid></control><display><type>article</type><title>New tools for mass isotopomer data evaluation in (13)C flux analysis: mass isotope correction, data consistency checking, and precursor relationships</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wahl, S Aljoscha ; Dauner, Michael ; Wiechert, Wolfgang</creator><creatorcontrib>Wahl, S Aljoscha ; Dauner, Michael ; Wiechert, Wolfgang</creatorcontrib><description>13C metabolic flux analysis (MFA) is based on carbon-labeling experiments where a specifically (13)C labeled substrate is fed. The labeled carbon atoms distribute over the metabolic network and the label enrichment of certain metabolic pools is measured by using different methods. Recently, MS methods have been dramatically improved-large and precise datasets are now available. MS data has to be preprocessed and corrected for natural stable mass isotopes. In this article we present (1). a new elegant method to correct MS measurement data for natural stable mass isotopes by infinite dimensional matrix calculus and (2). we statistically analyze and discuss a reconstruction of labeling pattern in metabolic precursors from biosynthesis molecules. Moreover, we establish a new method for consistency checking of MS spectra that can be applied for automatic error recognition in high-throughput flux analysis procedures. Preprocessing the measurement data changes their statistical properties which have to be considered in the subsequent parameter fitting process for (13)C MFA. We show that correcting for stable mass isotopes leads to rather small correlations. On the other hand, a direct reconstruction of a precursor labeling pattern from an aromatic amino acid measurement turns out to be critical. Reasonable results are only obtained if additional, independent information about the labeling of at least one precursor is available. A versatile MatLab tool for the rapid correction and consistency checking of MS spectra is presented. Practical examples for the described methods are also given.</description><identifier>ISSN: 0006-3592</identifier><identifier>DOI: 10.1002/bit.10909</identifier><identifier>PMID: 14748080</identifier><language>eng</language><publisher>United States</publisher><subject>Alanine - analysis ; Alanine - chemistry ; Algorithms ; Carbon Isotopes - chemistry ; Isotope Labeling - methods ; Mass Spectrometry - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Software</subject><ispartof>Biotechnology and bioengineering, 2004-02, Vol.85 (3), p.259-268</ispartof><rights>Copyright 2004 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14748080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wahl, S Aljoscha</creatorcontrib><creatorcontrib>Dauner, Michael</creatorcontrib><creatorcontrib>Wiechert, Wolfgang</creatorcontrib><title>New tools for mass isotopomer data evaluation in (13)C flux analysis: mass isotope correction, data consistency checking, and precursor relationships</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>13C metabolic flux analysis (MFA) is based on carbon-labeling experiments where a specifically (13)C labeled substrate is fed. The labeled carbon atoms distribute over the metabolic network and the label enrichment of certain metabolic pools is measured by using different methods. Recently, MS methods have been dramatically improved-large and precise datasets are now available. MS data has to be preprocessed and corrected for natural stable mass isotopes. In this article we present (1). a new elegant method to correct MS measurement data for natural stable mass isotopes by infinite dimensional matrix calculus and (2). we statistically analyze and discuss a reconstruction of labeling pattern in metabolic precursors from biosynthesis molecules. Moreover, we establish a new method for consistency checking of MS spectra that can be applied for automatic error recognition in high-throughput flux analysis procedures. Preprocessing the measurement data changes their statistical properties which have to be considered in the subsequent parameter fitting process for (13)C MFA. We show that correcting for stable mass isotopes leads to rather small correlations. On the other hand, a direct reconstruction of a precursor labeling pattern from an aromatic amino acid measurement turns out to be critical. Reasonable results are only obtained if additional, independent information about the labeling of at least one precursor is available. A versatile MatLab tool for the rapid correction and consistency checking of MS spectra is presented. Practical examples for the described methods are also given.</description><subject>Alanine - analysis</subject><subject>Alanine - chemistry</subject><subject>Algorithms</subject><subject>Carbon Isotopes - chemistry</subject><subject>Isotope Labeling - methods</subject><subject>Mass Spectrometry - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Software</subject><issn>0006-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkMtOwzAQRb0A0VJY8APIKwRSA7bj2gk7VPGSKtjAOnKcCTU4cbAdoB_C_5LSIrGaGence6RB6IiSc0oIuyhNHJac5DtoTAgRSTrL2Qjth_A6nDITYg-NKJc8IxkZo-8H-MTRORtw7TxuVAjYBBdd5xrwuFJRYfhQtlfRuBabFp_S9GyOa9t_YdUquwomXP7PAdbOe9Brfrop0K4dqAitXmG9BP1m2pfpkK5wN4C9D4PZg_1VhKXpwgHarZUNcLidE_R8c_00v0sWj7f386tF0lHGYkIlAykYnSnBtKihJpAxraWkeUnKqqJUC8hSKSXPK8q44JzWvJplRNW6ZDydoJNNb-fdew8hFo0JGqxVLbg-FBkZPDldg8dbsC8bqIrOm0b5VfH3yPQHp9h00w</recordid><startdate>20040205</startdate><enddate>20040205</enddate><creator>Wahl, S Aljoscha</creator><creator>Dauner, Michael</creator><creator>Wiechert, Wolfgang</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20040205</creationdate><title>New tools for mass isotopomer data evaluation in (13)C flux analysis: mass isotope correction, data consistency checking, and precursor relationships</title><author>Wahl, S Aljoscha ; Dauner, Michael ; Wiechert, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p122t-172e76215a62c6fef0e82cc7719b0bdd11c6e8377749d1246441f4d580afcb243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Alanine - analysis</topic><topic>Alanine - chemistry</topic><topic>Algorithms</topic><topic>Carbon Isotopes - chemistry</topic><topic>Isotope Labeling - methods</topic><topic>Mass Spectrometry - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wahl, S Aljoscha</creatorcontrib><creatorcontrib>Dauner, Michael</creatorcontrib><creatorcontrib>Wiechert, Wolfgang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wahl, S Aljoscha</au><au>Dauner, Michael</au><au>Wiechert, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New tools for mass isotopomer data evaluation in (13)C flux analysis: mass isotope correction, data consistency checking, and precursor relationships</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2004-02-05</date><risdate>2004</risdate><volume>85</volume><issue>3</issue><spage>259</spage><epage>268</epage><pages>259-268</pages><issn>0006-3592</issn><abstract>13C metabolic flux analysis (MFA) is based on carbon-labeling experiments where a specifically (13)C labeled substrate is fed. The labeled carbon atoms distribute over the metabolic network and the label enrichment of certain metabolic pools is measured by using different methods. Recently, MS methods have been dramatically improved-large and precise datasets are now available. MS data has to be preprocessed and corrected for natural stable mass isotopes. In this article we present (1). a new elegant method to correct MS measurement data for natural stable mass isotopes by infinite dimensional matrix calculus and (2). we statistically analyze and discuss a reconstruction of labeling pattern in metabolic precursors from biosynthesis molecules. Moreover, we establish a new method for consistency checking of MS spectra that can be applied for automatic error recognition in high-throughput flux analysis procedures. Preprocessing the measurement data changes their statistical properties which have to be considered in the subsequent parameter fitting process for (13)C MFA. We show that correcting for stable mass isotopes leads to rather small correlations. On the other hand, a direct reconstruction of a precursor labeling pattern from an aromatic amino acid measurement turns out to be critical. Reasonable results are only obtained if additional, independent information about the labeling of at least one precursor is available. A versatile MatLab tool for the rapid correction and consistency checking of MS spectra is presented. Practical examples for the described methods are also given.</abstract><cop>United States</cop><pmid>14748080</pmid><doi>10.1002/bit.10909</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2004-02, Vol.85 (3), p.259-268
issn 0006-3592
language eng
recordid cdi_proquest_miscellaneous_80122914
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alanine - analysis
Alanine - chemistry
Algorithms
Carbon Isotopes - chemistry
Isotope Labeling - methods
Mass Spectrometry - methods
Reproducibility of Results
Sensitivity and Specificity
Software
title New tools for mass isotopomer data evaluation in (13)C flux analysis: mass isotope correction, data consistency checking, and precursor relationships
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20tools%20for%20mass%20isotopomer%20data%20evaluation%20in%20(13)C%20flux%20analysis:%20mass%20isotope%20correction,%20data%20consistency%20checking,%20and%20precursor%20relationships&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Wahl,%20S%20Aljoscha&rft.date=2004-02-05&rft.volume=85&rft.issue=3&rft.spage=259&rft.epage=268&rft.pages=259-268&rft.issn=0006-3592&rft_id=info:doi/10.1002/bit.10909&rft_dat=%3Cproquest_pubme%3E80122914%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80122914&rft_id=info:pmid/14748080&rfr_iscdi=true