A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages

A knowledge-driven algorithm for a rapid, robust, accurate, and automatic extraction of the human cerebral ventricular system from MR neuroimages is proposed. Its novelty is in combination of neuroanatomy, radiological properties, and variability of the ventricular system with image processing techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2004, Vol.21 (1), p.269-282
Hauptverfasser: Xia, Yan, Hu, Qingmao, Aziz, Aamer, Nowinski, Wieslaw L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 1
container_start_page 269
container_title NeuroImage (Orlando, Fla.)
container_volume 21
creator Xia, Yan
Hu, Qingmao
Aziz, Aamer
Nowinski, Wieslaw L.
description A knowledge-driven algorithm for a rapid, robust, accurate, and automatic extraction of the human cerebral ventricular system from MR neuroimages is proposed. Its novelty is in combination of neuroanatomy, radiological properties, and variability of the ventricular system with image processing techniques. The ventricular system is divided into six 3D regions: bodies and inferior horns of the lateral ventricles, third ventricle, and fourth ventricle. Within each ventricular region, a 2D region of interest (ROI) is defined based on anatomy and variability. Each ventricular region is further subdivided into subregions, and conditions detecting and preventing leakage into the extra-ventricular space are specified for each subregion. The algorithm extracts the ventricular system by (1) processing each ROI (to calculate its local statistics, determine local intensity ranges of cerebrospinal fluid and gray and white matters, set a seed point within the ROI, grow region directionally in 3D, check anti-leakage conditions, and correct growing if leakage occurred) and (2) connecting all unconnected regions grown by relaxing growing conditions. The algorithm was validated qualitatively on 68 and quantitatively on 38 MRI normal and pathological cases (30 clinical, 20 MGH Brain Repository, and 18 MNI BrainWeb data sets). It runs successfully for normal and pathological cases provided that the slice thickness is less than 3.0 mm in axial and less than 2.0 mm in coronal directions, and the data do not have a high inter-slice intensity variability. The algorithm also works satisfactorily in the presence of up to 9% noise and up to 40% RF inhomogeneity for the BrainWeb data. The running time is less than 5 s on a Pentium 4, 2.0 GHz PC. The best overlap metric between the results of a radiology expert and the algorithm is 0.9879 and the worst 0.9527; the mean and standard deviation of the overlap metric are 0.9723 and 0.01087, respectively.
doi_str_mv 10.1016/j.neuroimage.2003.09.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80119249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811903005767</els_id><sourcerecordid>3244587571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d32ce2d5287745356407814754b05601eac13d5be98b8f4e69d8d3f642f501323</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EoqXwF5AlJG4Jdhwn9rFUQJGKkBCcLcee7HpJ4mXsFHrht9erXWklLhys8eGbN_PmEUI5qznj3btdvcCKMcx2A3XDmKiZrlmjn5BLzrSstOybp4e_FJXiXF-QFyntGGOat-o5ueBt3_Kuk5fk7zX9ucTfE_gNVB7DPSzUTpuIIW9nOkaklqLdB0_tUt6a42xzcBT-ZLQuh7jQONK8BbpdZ7tQBwgD2okWoYzBrZNFmh5ShqKGcaZfvtHz7ukleTbaKcGrU70iPz5--H5zW919_fT55vquckKrXHnROGi8bFTft1LIrmW9KiZkOzDZMQ7WceHlAFoNamyh0155MXZtM0rGRSOuyNuj7h7jrxVSNnNIDqbJLhDXZBQrV2paXcA3_4C7uOJSdjNcsq4XWnNeKHWkHMaUEEazx2IIHwxn5pCQ2ZmzS3NIyDBtSkKl9fVpwDrM4M-Np0gK8P4IQLnHfQA0yQVYHPiA4LLxMfx_yiO7ZKgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506739911</pqid></control><display><type>article</type><title>A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Xia, Yan ; Hu, Qingmao ; Aziz, Aamer ; Nowinski, Wieslaw L.</creator><creatorcontrib>Xia, Yan ; Hu, Qingmao ; Aziz, Aamer ; Nowinski, Wieslaw L.</creatorcontrib><description>A knowledge-driven algorithm for a rapid, robust, accurate, and automatic extraction of the human cerebral ventricular system from MR neuroimages is proposed. Its novelty is in combination of neuroanatomy, radiological properties, and variability of the ventricular system with image processing techniques. The ventricular system is divided into six 3D regions: bodies and inferior horns of the lateral ventricles, third ventricle, and fourth ventricle. Within each ventricular region, a 2D region of interest (ROI) is defined based on anatomy and variability. Each ventricular region is further subdivided into subregions, and conditions detecting and preventing leakage into the extra-ventricular space are specified for each subregion. The algorithm extracts the ventricular system by (1) processing each ROI (to calculate its local statistics, determine local intensity ranges of cerebrospinal fluid and gray and white matters, set a seed point within the ROI, grow region directionally in 3D, check anti-leakage conditions, and correct growing if leakage occurred) and (2) connecting all unconnected regions grown by relaxing growing conditions. The algorithm was validated qualitatively on 68 and quantitatively on 38 MRI normal and pathological cases (30 clinical, 20 MGH Brain Repository, and 18 MNI BrainWeb data sets). It runs successfully for normal and pathological cases provided that the slice thickness is less than 3.0 mm in axial and less than 2.0 mm in coronal directions, and the data do not have a high inter-slice intensity variability. The algorithm also works satisfactorily in the presence of up to 9% noise and up to 40% RF inhomogeneity for the BrainWeb data. The running time is less than 5 s on a Pentium 4, 2.0 GHz PC. The best overlap metric between the results of a radiology expert and the algorithm is 0.9879 and the worst 0.9527; the mean and standard deviation of the overlap metric are 0.9723 and 0.01087, respectively.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2003.09.029</identifier><identifier>PMID: 14741665</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Algorithms ; Artificial Intelligence ; Brain ; Brain - pathology ; Brain Neoplasms - diagnosis ; Cerebral Ventricles - pathology ; Child ; Computer Simulation ; Datasets ; Diagnosis, Computer-Assisted - methods ; Extraction ; Female ; Fuzzy sets ; Humans ; Hydrocephalus - diagnosis ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; Knowledge ; Magnetic Resonance Imaging - methods ; Male ; Mathematical Computing ; MRI ; Neuroimaging ; Phantoms, Imaging ; Reference Values ; Sensitivity and Specificity ; Software ; Ventricular system</subject><ispartof>NeuroImage (Orlando, Fla.), 2004, Vol.21 (1), p.269-282</ispartof><rights>2003 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jan 1, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d32ce2d5287745356407814754b05601eac13d5be98b8f4e69d8d3f642f501323</citedby><cites>FETCH-LOGICAL-c398t-d32ce2d5287745356407814754b05601eac13d5be98b8f4e69d8d3f642f501323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506739911?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14741665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>Hu, Qingmao</creatorcontrib><creatorcontrib>Aziz, Aamer</creatorcontrib><creatorcontrib>Nowinski, Wieslaw L.</creatorcontrib><title>A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>A knowledge-driven algorithm for a rapid, robust, accurate, and automatic extraction of the human cerebral ventricular system from MR neuroimages is proposed. Its novelty is in combination of neuroanatomy, radiological properties, and variability of the ventricular system with image processing techniques. The ventricular system is divided into six 3D regions: bodies and inferior horns of the lateral ventricles, third ventricle, and fourth ventricle. Within each ventricular region, a 2D region of interest (ROI) is defined based on anatomy and variability. Each ventricular region is further subdivided into subregions, and conditions detecting and preventing leakage into the extra-ventricular space are specified for each subregion. The algorithm extracts the ventricular system by (1) processing each ROI (to calculate its local statistics, determine local intensity ranges of cerebrospinal fluid and gray and white matters, set a seed point within the ROI, grow region directionally in 3D, check anti-leakage conditions, and correct growing if leakage occurred) and (2) connecting all unconnected regions grown by relaxing growing conditions. The algorithm was validated qualitatively on 68 and quantitatively on 38 MRI normal and pathological cases (30 clinical, 20 MGH Brain Repository, and 18 MNI BrainWeb data sets). It runs successfully for normal and pathological cases provided that the slice thickness is less than 3.0 mm in axial and less than 2.0 mm in coronal directions, and the data do not have a high inter-slice intensity variability. The algorithm also works satisfactorily in the presence of up to 9% noise and up to 40% RF inhomogeneity for the BrainWeb data. The running time is less than 5 s on a Pentium 4, 2.0 GHz PC. The best overlap metric between the results of a radiology expert and the algorithm is 0.9879 and the worst 0.9527; the mean and standard deviation of the overlap metric are 0.9723 and 0.01087, respectively.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Cerebral Ventricles - pathology</subject><subject>Child</subject><subject>Computer Simulation</subject><subject>Datasets</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Extraction</subject><subject>Female</subject><subject>Fuzzy sets</subject><subject>Humans</subject><subject>Hydrocephalus - diagnosis</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Knowledge</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Mathematical Computing</subject><subject>MRI</subject><subject>Neuroimaging</subject><subject>Phantoms, Imaging</subject><subject>Reference Values</subject><subject>Sensitivity and Specificity</subject><subject>Software</subject><subject>Ventricular system</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUFv1DAQhS0EoqXwF5AlJG4Jdhwn9rFUQJGKkBCcLcee7HpJ4mXsFHrht9erXWklLhys8eGbN_PmEUI5qznj3btdvcCKMcx2A3XDmKiZrlmjn5BLzrSstOybp4e_FJXiXF-QFyntGGOat-o5ueBt3_Kuk5fk7zX9ucTfE_gNVB7DPSzUTpuIIW9nOkaklqLdB0_tUt6a42xzcBT-ZLQuh7jQONK8BbpdZ7tQBwgD2okWoYzBrZNFmh5ShqKGcaZfvtHz7ukleTbaKcGrU70iPz5--H5zW919_fT55vquckKrXHnROGi8bFTft1LIrmW9KiZkOzDZMQ7WceHlAFoNamyh0155MXZtM0rGRSOuyNuj7h7jrxVSNnNIDqbJLhDXZBQrV2paXcA3_4C7uOJSdjNcsq4XWnNeKHWkHMaUEEazx2IIHwxn5pCQ2ZmzS3NIyDBtSkKl9fVpwDrM4M-Np0gK8P4IQLnHfQA0yQVYHPiA4LLxMfx_yiO7ZKgM</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Xia, Yan</creator><creator>Hu, Qingmao</creator><creator>Aziz, Aamer</creator><creator>Nowinski, Wieslaw L.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages</title><author>Xia, Yan ; Hu, Qingmao ; Aziz, Aamer ; Nowinski, Wieslaw L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d32ce2d5287745356407814754b05601eac13d5be98b8f4e69d8d3f642f501323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Cerebral Ventricles - pathology</topic><topic>Child</topic><topic>Computer Simulation</topic><topic>Datasets</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Extraction</topic><topic>Female</topic><topic>Fuzzy sets</topic><topic>Humans</topic><topic>Hydrocephalus - diagnosis</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Knowledge</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Mathematical Computing</topic><topic>MRI</topic><topic>Neuroimaging</topic><topic>Phantoms, Imaging</topic><topic>Reference Values</topic><topic>Sensitivity and Specificity</topic><topic>Software</topic><topic>Ventricular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>Hu, Qingmao</creatorcontrib><creatorcontrib>Aziz, Aamer</creatorcontrib><creatorcontrib>Nowinski, Wieslaw L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Yan</au><au>Hu, Qingmao</au><au>Aziz, Aamer</au><au>Nowinski, Wieslaw L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2004</date><risdate>2004</risdate><volume>21</volume><issue>1</issue><spage>269</spage><epage>282</epage><pages>269-282</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>A knowledge-driven algorithm for a rapid, robust, accurate, and automatic extraction of the human cerebral ventricular system from MR neuroimages is proposed. Its novelty is in combination of neuroanatomy, radiological properties, and variability of the ventricular system with image processing techniques. The ventricular system is divided into six 3D regions: bodies and inferior horns of the lateral ventricles, third ventricle, and fourth ventricle. Within each ventricular region, a 2D region of interest (ROI) is defined based on anatomy and variability. Each ventricular region is further subdivided into subregions, and conditions detecting and preventing leakage into the extra-ventricular space are specified for each subregion. The algorithm extracts the ventricular system by (1) processing each ROI (to calculate its local statistics, determine local intensity ranges of cerebrospinal fluid and gray and white matters, set a seed point within the ROI, grow region directionally in 3D, check anti-leakage conditions, and correct growing if leakage occurred) and (2) connecting all unconnected regions grown by relaxing growing conditions. The algorithm was validated qualitatively on 68 and quantitatively on 38 MRI normal and pathological cases (30 clinical, 20 MGH Brain Repository, and 18 MNI BrainWeb data sets). It runs successfully for normal and pathological cases provided that the slice thickness is less than 3.0 mm in axial and less than 2.0 mm in coronal directions, and the data do not have a high inter-slice intensity variability. The algorithm also works satisfactorily in the presence of up to 9% noise and up to 40% RF inhomogeneity for the BrainWeb data. The running time is less than 5 s on a Pentium 4, 2.0 GHz PC. The best overlap metric between the results of a radiology expert and the algorithm is 0.9879 and the worst 0.9527; the mean and standard deviation of the overlap metric are 0.9723 and 0.01087, respectively.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>14741665</pmid><doi>10.1016/j.neuroimage.2003.09.029</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2004, Vol.21 (1), p.269-282
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_80119249
source MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland
subjects Adolescent
Adult
Algorithms
Artificial Intelligence
Brain
Brain - pathology
Brain Neoplasms - diagnosis
Cerebral Ventricles - pathology
Child
Computer Simulation
Datasets
Diagnosis, Computer-Assisted - methods
Extraction
Female
Fuzzy sets
Humans
Hydrocephalus - diagnosis
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Knowledge
Magnetic Resonance Imaging - methods
Male
Mathematical Computing
MRI
Neuroimaging
Phantoms, Imaging
Reference Values
Sensitivity and Specificity
Software
Ventricular system
title A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20knowledge-driven%20algorithm%20for%20a%20rapid%20and%20automatic%20extraction%20of%20the%20human%20cerebral%20ventricular%20system%20from%20MR%20neuroimages&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Xia,%20Yan&rft.date=2004&rft.volume=21&rft.issue=1&rft.spage=269&rft.epage=282&rft.pages=269-282&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2003.09.029&rft_dat=%3Cproquest_cross%3E3244587571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506739911&rft_id=info:pmid/14741665&rft_els_id=S1053811903005767&rfr_iscdi=true