A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages
A knowledge-driven algorithm for a rapid, robust, accurate, and automatic extraction of the human cerebral ventricular system from MR neuroimages is proposed. Its novelty is in combination of neuroanatomy, radiological properties, and variability of the ventricular system with image processing techn...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2004, Vol.21 (1), p.269-282 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 282 |
---|---|
container_issue | 1 |
container_start_page | 269 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 21 |
creator | Xia, Yan Hu, Qingmao Aziz, Aamer Nowinski, Wieslaw L. |
description | A knowledge-driven algorithm for a rapid, robust, accurate, and automatic extraction of the human cerebral ventricular system from MR neuroimages is proposed. Its novelty is in combination of neuroanatomy, radiological properties, and variability of the ventricular system with image processing techniques. The ventricular system is divided into six 3D regions: bodies and inferior horns of the lateral ventricles, third ventricle, and fourth ventricle. Within each ventricular region, a 2D region of interest (ROI) is defined based on anatomy and variability. Each ventricular region is further subdivided into subregions, and conditions detecting and preventing leakage into the extra-ventricular space are specified for each subregion. The algorithm extracts the ventricular system by (1) processing each ROI (to calculate its local statistics, determine local intensity ranges of cerebrospinal fluid and gray and white matters, set a seed point within the ROI, grow region directionally in 3D, check anti-leakage conditions, and correct growing if leakage occurred) and (2) connecting all unconnected regions grown by relaxing growing conditions.
The algorithm was validated qualitatively on 68 and quantitatively on 38 MRI normal and pathological cases (30 clinical, 20 MGH Brain Repository, and 18 MNI BrainWeb data sets). It runs successfully for normal and pathological cases provided that the slice thickness is less than 3.0 mm in axial and less than 2.0 mm in coronal directions, and the data do not have a high inter-slice intensity variability. The algorithm also works satisfactorily in the presence of up to 9% noise and up to 40% RF inhomogeneity for the BrainWeb data. The running time is less than 5 s on a Pentium 4, 2.0 GHz PC. The best overlap metric between the results of a radiology expert and the algorithm is 0.9879 and the worst 0.9527; the mean and standard deviation of the overlap metric are 0.9723 and 0.01087, respectively. |
doi_str_mv | 10.1016/j.neuroimage.2003.09.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80119249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811903005767</els_id><sourcerecordid>3244587571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d32ce2d5287745356407814754b05601eac13d5be98b8f4e69d8d3f642f501323</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EoqXwF5AlJG4Jdhwn9rFUQJGKkBCcLcee7HpJ4mXsFHrht9erXWklLhys8eGbN_PmEUI5qznj3btdvcCKMcx2A3XDmKiZrlmjn5BLzrSstOybp4e_FJXiXF-QFyntGGOat-o5ueBt3_Kuk5fk7zX9ucTfE_gNVB7DPSzUTpuIIW9nOkaklqLdB0_tUt6a42xzcBT-ZLQuh7jQONK8BbpdZ7tQBwgD2okWoYzBrZNFmh5ShqKGcaZfvtHz7ukleTbaKcGrU70iPz5--H5zW919_fT55vquckKrXHnROGi8bFTft1LIrmW9KiZkOzDZMQ7WceHlAFoNamyh0155MXZtM0rGRSOuyNuj7h7jrxVSNnNIDqbJLhDXZBQrV2paXcA3_4C7uOJSdjNcsq4XWnNeKHWkHMaUEEazx2IIHwxn5pCQ2ZmzS3NIyDBtSkKl9fVpwDrM4M-Np0gK8P4IQLnHfQA0yQVYHPiA4LLxMfx_yiO7ZKgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506739911</pqid></control><display><type>article</type><title>A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Xia, Yan ; Hu, Qingmao ; Aziz, Aamer ; Nowinski, Wieslaw L.</creator><creatorcontrib>Xia, Yan ; Hu, Qingmao ; Aziz, Aamer ; Nowinski, Wieslaw L.</creatorcontrib><description>A knowledge-driven algorithm for a rapid, robust, accurate, and automatic extraction of the human cerebral ventricular system from MR neuroimages is proposed. Its novelty is in combination of neuroanatomy, radiological properties, and variability of the ventricular system with image processing techniques. The ventricular system is divided into six 3D regions: bodies and inferior horns of the lateral ventricles, third ventricle, and fourth ventricle. Within each ventricular region, a 2D region of interest (ROI) is defined based on anatomy and variability. Each ventricular region is further subdivided into subregions, and conditions detecting and preventing leakage into the extra-ventricular space are specified for each subregion. The algorithm extracts the ventricular system by (1) processing each ROI (to calculate its local statistics, determine local intensity ranges of cerebrospinal fluid and gray and white matters, set a seed point within the ROI, grow region directionally in 3D, check anti-leakage conditions, and correct growing if leakage occurred) and (2) connecting all unconnected regions grown by relaxing growing conditions.
The algorithm was validated qualitatively on 68 and quantitatively on 38 MRI normal and pathological cases (30 clinical, 20 MGH Brain Repository, and 18 MNI BrainWeb data sets). It runs successfully for normal and pathological cases provided that the slice thickness is less than 3.0 mm in axial and less than 2.0 mm in coronal directions, and the data do not have a high inter-slice intensity variability. The algorithm also works satisfactorily in the presence of up to 9% noise and up to 40% RF inhomogeneity for the BrainWeb data. The running time is less than 5 s on a Pentium 4, 2.0 GHz PC. The best overlap metric between the results of a radiology expert and the algorithm is 0.9879 and the worst 0.9527; the mean and standard deviation of the overlap metric are 0.9723 and 0.01087, respectively.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2003.09.029</identifier><identifier>PMID: 14741665</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Algorithms ; Artificial Intelligence ; Brain ; Brain - pathology ; Brain Neoplasms - diagnosis ; Cerebral Ventricles - pathology ; Child ; Computer Simulation ; Datasets ; Diagnosis, Computer-Assisted - methods ; Extraction ; Female ; Fuzzy sets ; Humans ; Hydrocephalus - diagnosis ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; Knowledge ; Magnetic Resonance Imaging - methods ; Male ; Mathematical Computing ; MRI ; Neuroimaging ; Phantoms, Imaging ; Reference Values ; Sensitivity and Specificity ; Software ; Ventricular system</subject><ispartof>NeuroImage (Orlando, Fla.), 2004, Vol.21 (1), p.269-282</ispartof><rights>2003 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jan 1, 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d32ce2d5287745356407814754b05601eac13d5be98b8f4e69d8d3f642f501323</citedby><cites>FETCH-LOGICAL-c398t-d32ce2d5287745356407814754b05601eac13d5be98b8f4e69d8d3f642f501323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506739911?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14741665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>Hu, Qingmao</creatorcontrib><creatorcontrib>Aziz, Aamer</creatorcontrib><creatorcontrib>Nowinski, Wieslaw L.</creatorcontrib><title>A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>A knowledge-driven algorithm for a rapid, robust, accurate, and automatic extraction of the human cerebral ventricular system from MR neuroimages is proposed. Its novelty is in combination of neuroanatomy, radiological properties, and variability of the ventricular system with image processing techniques. The ventricular system is divided into six 3D regions: bodies and inferior horns of the lateral ventricles, third ventricle, and fourth ventricle. Within each ventricular region, a 2D region of interest (ROI) is defined based on anatomy and variability. Each ventricular region is further subdivided into subregions, and conditions detecting and preventing leakage into the extra-ventricular space are specified for each subregion. The algorithm extracts the ventricular system by (1) processing each ROI (to calculate its local statistics, determine local intensity ranges of cerebrospinal fluid and gray and white matters, set a seed point within the ROI, grow region directionally in 3D, check anti-leakage conditions, and correct growing if leakage occurred) and (2) connecting all unconnected regions grown by relaxing growing conditions.
The algorithm was validated qualitatively on 68 and quantitatively on 38 MRI normal and pathological cases (30 clinical, 20 MGH Brain Repository, and 18 MNI BrainWeb data sets). It runs successfully for normal and pathological cases provided that the slice thickness is less than 3.0 mm in axial and less than 2.0 mm in coronal directions, and the data do not have a high inter-slice intensity variability. The algorithm also works satisfactorily in the presence of up to 9% noise and up to 40% RF inhomogeneity for the BrainWeb data. The running time is less than 5 s on a Pentium 4, 2.0 GHz PC. The best overlap metric between the results of a radiology expert and the algorithm is 0.9879 and the worst 0.9527; the mean and standard deviation of the overlap metric are 0.9723 and 0.01087, respectively.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain</subject><subject>Brain - pathology</subject><subject>Brain Neoplasms - diagnosis</subject><subject>Cerebral Ventricles - pathology</subject><subject>Child</subject><subject>Computer Simulation</subject><subject>Datasets</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Extraction</subject><subject>Female</subject><subject>Fuzzy sets</subject><subject>Humans</subject><subject>Hydrocephalus - diagnosis</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Knowledge</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Mathematical Computing</subject><subject>MRI</subject><subject>Neuroimaging</subject><subject>Phantoms, Imaging</subject><subject>Reference Values</subject><subject>Sensitivity and Specificity</subject><subject>Software</subject><subject>Ventricular system</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUFv1DAQhS0EoqXwF5AlJG4Jdhwn9rFUQJGKkBCcLcee7HpJ4mXsFHrht9erXWklLhys8eGbN_PmEUI5qznj3btdvcCKMcx2A3XDmKiZrlmjn5BLzrSstOybp4e_FJXiXF-QFyntGGOat-o5ueBt3_Kuk5fk7zX9ucTfE_gNVB7DPSzUTpuIIW9nOkaklqLdB0_tUt6a42xzcBT-ZLQuh7jQONK8BbpdZ7tQBwgD2okWoYzBrZNFmh5ShqKGcaZfvtHz7ukleTbaKcGrU70iPz5--H5zW919_fT55vquckKrXHnROGi8bFTft1LIrmW9KiZkOzDZMQ7WceHlAFoNamyh0155MXZtM0rGRSOuyNuj7h7jrxVSNnNIDqbJLhDXZBQrV2paXcA3_4C7uOJSdjNcsq4XWnNeKHWkHMaUEEazx2IIHwxn5pCQ2ZmzS3NIyDBtSkKl9fVpwDrM4M-Np0gK8P4IQLnHfQA0yQVYHPiA4LLxMfx_yiO7ZKgM</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Xia, Yan</creator><creator>Hu, Qingmao</creator><creator>Aziz, Aamer</creator><creator>Nowinski, Wieslaw L.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages</title><author>Xia, Yan ; Hu, Qingmao ; Aziz, Aamer ; Nowinski, Wieslaw L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d32ce2d5287745356407814754b05601eac13d5be98b8f4e69d8d3f642f501323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain</topic><topic>Brain - pathology</topic><topic>Brain Neoplasms - diagnosis</topic><topic>Cerebral Ventricles - pathology</topic><topic>Child</topic><topic>Computer Simulation</topic><topic>Datasets</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Extraction</topic><topic>Female</topic><topic>Fuzzy sets</topic><topic>Humans</topic><topic>Hydrocephalus - diagnosis</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Knowledge</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Mathematical Computing</topic><topic>MRI</topic><topic>Neuroimaging</topic><topic>Phantoms, Imaging</topic><topic>Reference Values</topic><topic>Sensitivity and Specificity</topic><topic>Software</topic><topic>Ventricular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>Hu, Qingmao</creatorcontrib><creatorcontrib>Aziz, Aamer</creatorcontrib><creatorcontrib>Nowinski, Wieslaw L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Yan</au><au>Hu, Qingmao</au><au>Aziz, Aamer</au><au>Nowinski, Wieslaw L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2004</date><risdate>2004</risdate><volume>21</volume><issue>1</issue><spage>269</spage><epage>282</epage><pages>269-282</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>A knowledge-driven algorithm for a rapid, robust, accurate, and automatic extraction of the human cerebral ventricular system from MR neuroimages is proposed. Its novelty is in combination of neuroanatomy, radiological properties, and variability of the ventricular system with image processing techniques. The ventricular system is divided into six 3D regions: bodies and inferior horns of the lateral ventricles, third ventricle, and fourth ventricle. Within each ventricular region, a 2D region of interest (ROI) is defined based on anatomy and variability. Each ventricular region is further subdivided into subregions, and conditions detecting and preventing leakage into the extra-ventricular space are specified for each subregion. The algorithm extracts the ventricular system by (1) processing each ROI (to calculate its local statistics, determine local intensity ranges of cerebrospinal fluid and gray and white matters, set a seed point within the ROI, grow region directionally in 3D, check anti-leakage conditions, and correct growing if leakage occurred) and (2) connecting all unconnected regions grown by relaxing growing conditions.
The algorithm was validated qualitatively on 68 and quantitatively on 38 MRI normal and pathological cases (30 clinical, 20 MGH Brain Repository, and 18 MNI BrainWeb data sets). It runs successfully for normal and pathological cases provided that the slice thickness is less than 3.0 mm in axial and less than 2.0 mm in coronal directions, and the data do not have a high inter-slice intensity variability. The algorithm also works satisfactorily in the presence of up to 9% noise and up to 40% RF inhomogeneity for the BrainWeb data. The running time is less than 5 s on a Pentium 4, 2.0 GHz PC. The best overlap metric between the results of a radiology expert and the algorithm is 0.9879 and the worst 0.9527; the mean and standard deviation of the overlap metric are 0.9723 and 0.01087, respectively.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>14741665</pmid><doi>10.1016/j.neuroimage.2003.09.029</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2004, Vol.21 (1), p.269-282 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_80119249 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland |
subjects | Adolescent Adult Algorithms Artificial Intelligence Brain Brain - pathology Brain Neoplasms - diagnosis Cerebral Ventricles - pathology Child Computer Simulation Datasets Diagnosis, Computer-Assisted - methods Extraction Female Fuzzy sets Humans Hydrocephalus - diagnosis Image Enhancement - methods Image Processing, Computer-Assisted - methods Knowledge Magnetic Resonance Imaging - methods Male Mathematical Computing MRI Neuroimaging Phantoms, Imaging Reference Values Sensitivity and Specificity Software Ventricular system |
title | A knowledge-driven algorithm for a rapid and automatic extraction of the human cerebral ventricular system from MR neuroimages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20knowledge-driven%20algorithm%20for%20a%20rapid%20and%20automatic%20extraction%20of%20the%20human%20cerebral%20ventricular%20system%20from%20MR%20neuroimages&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Xia,%20Yan&rft.date=2004&rft.volume=21&rft.issue=1&rft.spage=269&rft.epage=282&rft.pages=269-282&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2003.09.029&rft_dat=%3Cproquest_cross%3E3244587571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506739911&rft_id=info:pmid/14741665&rft_els_id=S1053811903005767&rfr_iscdi=true |