Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway
After inhibition of cytochrome c oxidase by nitric oxide, astrocytes maintain energy production by upregulating glycolysis - a response which does not seem to be available to neurons. Here, we show that in astrocytes, after inhibition of respiration by nitric oxide, there is a rapid, cyclic GMP-inde...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2004-01, Vol.6 (1), p.45-51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 45 |
container_title | Nature cell biology |
container_volume | 6 |
creator | Moncada, Salvador Almeida, Angeles Bolaños, Juan P |
description | After inhibition of cytochrome c oxidase by nitric oxide, astrocytes maintain energy production by upregulating glycolysis - a response which does not seem to be available to neurons. Here, we show that in astrocytes, after inhibition of respiration by nitric oxide, there is a rapid, cyclic GMP-independent increase in the activity of 6-phosphofructo-1-kinase (PFK1), a master regulator of glycolysis, and an increase in the concentration of its most powerful positive allosteric activator, fructose-2,6-bisphosphate (F2,6P2). In neurons, nitric oxide failed to alter F2,6P2 concentration or PFK1 activity. This failure could be accounted for by the much lower amount of 6-phosphofructo-2-kinase (PFK2, the enzyme responsible for F2,6P2 biosynthesis) in neurons. Indeed, full activation of neuronal PFK1 was achieved by adding cytosol from nitric oxide-treated astrocytes. Furthermore, using the small interfering RNA (siRNA) strategy, we demonstrated that the rapid activation of glycolysis by nitric oxide is dependent on phosphorylation of the energy charge-sensitive AMP-activated protein kinase, resulting in activation of PFK2 and protection of cells from apoptosis. Thus the virtual absence of PFK2 in neurons may explain their extreme sensitivity to energy depletion and degeneration. |
doi_str_mv | 10.1038/ncb1080 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_80081296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632744169</galeid><sourcerecordid>A632744169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-1b006eb0c08d2eb98b9aae9a7645adf127b7d89b0b02e9ff7c7c2126e68988a43</originalsourceid><addsrcrecordid>eNqFkctu1TAQhiNERUtBPAHIYgF0kWI7Pr4sj6oWKpWLuKwjx5kkLjn2wXbUnrevq4RWhQW2rBn5_-bXjKYoXhB8THAl3zvTECzxo-KAMMFLxoV6fJvzVSkqRfeLpzFeYkwYw-JJsZ8FKYWiB0X_2aZgDfLXtgUUr2wyA0TkHerHnfHjLtqI0hD81A85Alp_-oq2wSewDv2yTkdA2rWIl9vBx_y6MJnkS1ou4lan4UrvnhV7nR4jPF_iYfHz7PTHycfy4suH85P1RWlWnKaSNBhzaLDBsqXQKNkorUFpwdlKtx2hohGtVA1uMAXVdcIIQwnlwKWSUrPqsHgz--Yef08QU72x0cA4agd-irXEWBKq-H9BoiiVjMgMvv4LvPRTcHmImuajqKpWGTqeoV6PUFvX-RS0ybeFjTXeQWfz_5pXVDBGuMoFRw8KMpPgOvV6irE-__7tIft2Zk3wMQbo6m2wGx12NcH17frrZf2ZfLX0OjUbaO-5Zd8ZeDcDMUuuh3A_zL9eL2fU6TQFuPP6o98AwMDBGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222292935</pqid></control><display><type>article</type><title>Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Moncada, Salvador ; Almeida, Angeles ; Bolaños, Juan P</creator><creatorcontrib>Moncada, Salvador ; Almeida, Angeles ; Bolaños, Juan P</creatorcontrib><description>After inhibition of cytochrome c oxidase by nitric oxide, astrocytes maintain energy production by upregulating glycolysis - a response which does not seem to be available to neurons. Here, we show that in astrocytes, after inhibition of respiration by nitric oxide, there is a rapid, cyclic GMP-independent increase in the activity of 6-phosphofructo-1-kinase (PFK1), a master regulator of glycolysis, and an increase in the concentration of its most powerful positive allosteric activator, fructose-2,6-bisphosphate (F2,6P2). In neurons, nitric oxide failed to alter F2,6P2 concentration or PFK1 activity. This failure could be accounted for by the much lower amount of 6-phosphofructo-2-kinase (PFK2, the enzyme responsible for F2,6P2 biosynthesis) in neurons. Indeed, full activation of neuronal PFK1 was achieved by adding cytosol from nitric oxide-treated astrocytes. Furthermore, using the small interfering RNA (siRNA) strategy, we demonstrated that the rapid activation of glycolysis by nitric oxide is dependent on phosphorylation of the energy charge-sensitive AMP-activated protein kinase, resulting in activation of PFK2 and protection of cells from apoptosis. Thus the virtual absence of PFK2 in neurons may explain their extreme sensitivity to energy depletion and degeneration.</description><identifier>ISSN: 1465-7392</identifier><identifier>ISSN: 1476-4679</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1080</identifier><identifier>PMID: 14688792</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>AMP ; AMP-Activated Protein Kinases ; Animals ; Animals, Newborn ; Astrocytes - metabolism ; Biomedical and Life Sciences ; Biosynthesis ; Brain Chemistry - physiology ; Cancer Research ; Cell Biology ; Cell Survival - physiology ; Cells, Cultured ; Cellular signal transduction ; Cytochrome ; Developmental Biology ; Energy Metabolism - physiology ; Fetus ; Genetic aspects ; Glycolysis ; Glycolysis - physiology ; Kinases ; letter ; Life Sciences ; Mice ; Mice, Knockout ; Multienzyme Complexes - metabolism ; Nerve Degeneration - metabolism ; Nerve Degeneration - physiopathology ; Neurons - metabolism ; Nitric oxide ; Nitric Oxide - metabolism ; Phosphofructokinase-1 - metabolism ; Phosphofructokinase-2 - deficiency ; Phosphofructokinase-2 - metabolism ; Phosphorylation ; Properties ; Protein expression ; Protein kinases ; Protein-Serine-Threonine Kinases - metabolism ; Proteins ; Rats ; Rats, Wistar ; Respiration ; RNA, Small Interfering ; Signal Transduction - physiology ; Stem Cells</subject><ispartof>Nature cell biology, 2004-01, Vol.6 (1), p.45-51</ispartof><rights>Springer Nature Limited 2003</rights><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-1b006eb0c08d2eb98b9aae9a7645adf127b7d89b0b02e9ff7c7c2126e68988a43</citedby><cites>FETCH-LOGICAL-c562t-1b006eb0c08d2eb98b9aae9a7645adf127b7d89b0b02e9ff7c7c2126e68988a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14688792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moncada, Salvador</creatorcontrib><creatorcontrib>Almeida, Angeles</creatorcontrib><creatorcontrib>Bolaños, Juan P</creatorcontrib><title>Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>After inhibition of cytochrome c oxidase by nitric oxide, astrocytes maintain energy production by upregulating glycolysis - a response which does not seem to be available to neurons. Here, we show that in astrocytes, after inhibition of respiration by nitric oxide, there is a rapid, cyclic GMP-independent increase in the activity of 6-phosphofructo-1-kinase (PFK1), a master regulator of glycolysis, and an increase in the concentration of its most powerful positive allosteric activator, fructose-2,6-bisphosphate (F2,6P2). In neurons, nitric oxide failed to alter F2,6P2 concentration or PFK1 activity. This failure could be accounted for by the much lower amount of 6-phosphofructo-2-kinase (PFK2, the enzyme responsible for F2,6P2 biosynthesis) in neurons. Indeed, full activation of neuronal PFK1 was achieved by adding cytosol from nitric oxide-treated astrocytes. Furthermore, using the small interfering RNA (siRNA) strategy, we demonstrated that the rapid activation of glycolysis by nitric oxide is dependent on phosphorylation of the energy charge-sensitive AMP-activated protein kinase, resulting in activation of PFK2 and protection of cells from apoptosis. Thus the virtual absence of PFK2 in neurons may explain their extreme sensitivity to energy depletion and degeneration.</description><subject>AMP</subject><subject>AMP-Activated Protein Kinases</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Astrocytes - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Brain Chemistry - physiology</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Survival - physiology</subject><subject>Cells, Cultured</subject><subject>Cellular signal transduction</subject><subject>Cytochrome</subject><subject>Developmental Biology</subject><subject>Energy Metabolism - physiology</subject><subject>Fetus</subject><subject>Genetic aspects</subject><subject>Glycolysis</subject><subject>Glycolysis - physiology</subject><subject>Kinases</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Nerve Degeneration - metabolism</subject><subject>Nerve Degeneration - physiopathology</subject><subject>Neurons - metabolism</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Phosphofructokinase-1 - metabolism</subject><subject>Phosphofructokinase-2 - deficiency</subject><subject>Phosphofructokinase-2 - metabolism</subject><subject>Phosphorylation</subject><subject>Properties</subject><subject>Protein expression</subject><subject>Protein kinases</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Respiration</subject><subject>RNA, Small Interfering</subject><subject>Signal Transduction - physiology</subject><subject>Stem Cells</subject><issn>1465-7392</issn><issn>1476-4679</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctu1TAQhiNERUtBPAHIYgF0kWI7Pr4sj6oWKpWLuKwjx5kkLjn2wXbUnrevq4RWhQW2rBn5_-bXjKYoXhB8THAl3zvTECzxo-KAMMFLxoV6fJvzVSkqRfeLpzFeYkwYw-JJsZ8FKYWiB0X_2aZgDfLXtgUUr2wyA0TkHerHnfHjLtqI0hD81A85Alp_-oq2wSewDv2yTkdA2rWIl9vBx_y6MJnkS1ou4lan4UrvnhV7nR4jPF_iYfHz7PTHycfy4suH85P1RWlWnKaSNBhzaLDBsqXQKNkorUFpwdlKtx2hohGtVA1uMAXVdcIIQwnlwKWSUrPqsHgz--Yef08QU72x0cA4agd-irXEWBKq-H9BoiiVjMgMvv4LvPRTcHmImuajqKpWGTqeoV6PUFvX-RS0ybeFjTXeQWfz_5pXVDBGuMoFRw8KMpPgOvV6irE-__7tIft2Zk3wMQbo6m2wGx12NcH17frrZf2ZfLX0OjUbaO-5Zd8ZeDcDMUuuh3A_zL9eL2fU6TQFuPP6o98AwMDBGg</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Moncada, Salvador</creator><creator>Almeida, Angeles</creator><creator>Bolaños, Juan P</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040101</creationdate><title>Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway</title><author>Moncada, Salvador ; Almeida, Angeles ; Bolaños, Juan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-1b006eb0c08d2eb98b9aae9a7645adf127b7d89b0b02e9ff7c7c2126e68988a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>AMP</topic><topic>AMP-Activated Protein Kinases</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Astrocytes - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Brain Chemistry - physiology</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Survival - physiology</topic><topic>Cells, Cultured</topic><topic>Cellular signal transduction</topic><topic>Cytochrome</topic><topic>Developmental Biology</topic><topic>Energy Metabolism - physiology</topic><topic>Fetus</topic><topic>Genetic aspects</topic><topic>Glycolysis</topic><topic>Glycolysis - physiology</topic><topic>Kinases</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Nerve Degeneration - metabolism</topic><topic>Nerve Degeneration - physiopathology</topic><topic>Neurons - metabolism</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Phosphofructokinase-1 - metabolism</topic><topic>Phosphofructokinase-2 - deficiency</topic><topic>Phosphofructokinase-2 - metabolism</topic><topic>Phosphorylation</topic><topic>Properties</topic><topic>Protein expression</topic><topic>Protein kinases</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Respiration</topic><topic>RNA, Small Interfering</topic><topic>Signal Transduction - physiology</topic><topic>Stem Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moncada, Salvador</creatorcontrib><creatorcontrib>Almeida, Angeles</creatorcontrib><creatorcontrib>Bolaños, Juan P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moncada, Salvador</au><au>Almeida, Angeles</au><au>Bolaños, Juan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2004-01-01</date><risdate>2004</risdate><volume>6</volume><issue>1</issue><spage>45</spage><epage>51</epage><pages>45-51</pages><issn>1465-7392</issn><issn>1476-4679</issn><eissn>1476-4679</eissn><abstract>After inhibition of cytochrome c oxidase by nitric oxide, astrocytes maintain energy production by upregulating glycolysis - a response which does not seem to be available to neurons. Here, we show that in astrocytes, after inhibition of respiration by nitric oxide, there is a rapid, cyclic GMP-independent increase in the activity of 6-phosphofructo-1-kinase (PFK1), a master regulator of glycolysis, and an increase in the concentration of its most powerful positive allosteric activator, fructose-2,6-bisphosphate (F2,6P2). In neurons, nitric oxide failed to alter F2,6P2 concentration or PFK1 activity. This failure could be accounted for by the much lower amount of 6-phosphofructo-2-kinase (PFK2, the enzyme responsible for F2,6P2 biosynthesis) in neurons. Indeed, full activation of neuronal PFK1 was achieved by adding cytosol from nitric oxide-treated astrocytes. Furthermore, using the small interfering RNA (siRNA) strategy, we demonstrated that the rapid activation of glycolysis by nitric oxide is dependent on phosphorylation of the energy charge-sensitive AMP-activated protein kinase, resulting in activation of PFK2 and protection of cells from apoptosis. Thus the virtual absence of PFK2 in neurons may explain their extreme sensitivity to energy depletion and degeneration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>14688792</pmid><doi>10.1038/ncb1080</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2004-01, Vol.6 (1), p.45-51 |
issn | 1465-7392 1476-4679 1476-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_80081296 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | AMP AMP-Activated Protein Kinases Animals Animals, Newborn Astrocytes - metabolism Biomedical and Life Sciences Biosynthesis Brain Chemistry - physiology Cancer Research Cell Biology Cell Survival - physiology Cells, Cultured Cellular signal transduction Cytochrome Developmental Biology Energy Metabolism - physiology Fetus Genetic aspects Glycolysis Glycolysis - physiology Kinases letter Life Sciences Mice Mice, Knockout Multienzyme Complexes - metabolism Nerve Degeneration - metabolism Nerve Degeneration - physiopathology Neurons - metabolism Nitric oxide Nitric Oxide - metabolism Phosphofructokinase-1 - metabolism Phosphofructokinase-2 - deficiency Phosphofructokinase-2 - metabolism Phosphorylation Properties Protein expression Protein kinases Protein-Serine-Threonine Kinases - metabolism Proteins Rats Rats, Wistar Respiration RNA, Small Interfering Signal Transduction - physiology Stem Cells |
title | Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20oxide%20switches%20on%20glycolysis%20through%20the%20AMP%20protein%20kinase%20and%206-phosphofructo-2-kinase%20pathway&rft.jtitle=Nature%20cell%20biology&rft.au=Moncada,%20Salvador&rft.date=2004-01-01&rft.volume=6&rft.issue=1&rft.spage=45&rft.epage=51&rft.pages=45-51&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1080&rft_dat=%3Cgale_proqu%3EA632744169%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222292935&rft_id=info:pmid/14688792&rft_galeid=A632744169&rfr_iscdi=true |