BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia
Intermittent hypoxia causes a form of serotonin-dependent synaptic plasticity in the spinal cord known as phrenic long-term facilitation (pLTF). Here we show that increased synthesis of brain-derived neurotrophic factor (BDNF) in the spinal cord is necessary and sufficient for pLTF in adult rats. We...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2004-01, Vol.7 (1), p.48-55 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 1 |
container_start_page | 48 |
container_title | Nature neuroscience |
container_volume | 7 |
creator | Mitchell, Gordon S Baker-Herman, Tracy L Fuller, David D Bavis, Ryan W Zabka, Andrea G Golder, Francis J Doperalski, Nicholas J Johnson, Rebecca A Watters, Jyoti J |
description | Intermittent hypoxia causes a form of serotonin-dependent synaptic plasticity in the spinal cord known as phrenic long-term facilitation (pLTF). Here we show that increased synthesis of brain-derived neurotrophic factor (BDNF) in the spinal cord is necessary and sufficient for pLTF in adult rats. We found that intermittent hypoxia elicited serotonin-dependent increases in BDNF synthesis in ventral spinal segments containing the phrenic nucleus, and the magnitude of these BDNF increases correlated with pLTF magnitude. We used RNA interference (RNAi) to interfere with BDNF expression, and tyrosine kinase receptor inhibition to block BDNF signaling. These disruptions blocked pLTF, whereas intrathecal injection of BDNF elicited an effect similar to pLTF. Our findings demonstrate new roles and regulatory mechanisms for BDNF in the spinal cord and suggest new therapeutic strategies for treating breathing disorders such as respiratory insufficiency after spinal injury. These experiments also illustrate the potential use of RNAi to investigate functional consequences of gene expression in the mammalian nervous system in vivo. |
doi_str_mv | 10.1038/nn1166 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_80077623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185553658</galeid><sourcerecordid>A185553658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-9f2947922e3bc47f89c108323264de13df5d543a54fa1ac1b63aa5e27bc9a1203</originalsourceid><addsrcrecordid>eNqF0UtrFTEUB_BBFPtQP4HI4KLgYmpOXjNZ1mq1UBR8rIdzM8k1ZSaZJhns_fbmcgelbiSLhPA7h5P8q-oFkHMgrHvrPYCUj6pjEFw20FL5uJyJahtJhTyqTlK6JYS0olNPqyPgUikO7XGF795_vqpdqr3RJiWMuxr9UKfFWqed8bm2IdZpdh7HOppyiJhDUfOIKReSd0WMY_jl_LZ2Pps4uZz3hT93c7h3-Kx6YnFM5vm6n1Y_rj58v_zU3Hz5eH15cdNoTtvcKEsVbxWlhm00b22nNJCOUUYlHwywwYpBcIaCWwTUsJEMURjabrRCoISdVmeHvnMMd4tJuZ9c0mYc0ZuwpL4rr28lZf-FoChwDlDg63_gbVhi-YjUU0EIJ7zbdzs_oC2OpnfehhxRlzWYyengjXXl_gI6IQSToisFbx4UFJPNfd7iklJ__e3rQ7uOqmNIKRrbz9FNJaQeSL_PvT_kXuCrddRlM5nhL1uDLuDlAXjMSzR_wFr_GzjbsNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>250040483</pqid></control><display><type>article</type><title>BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Mitchell, Gordon S ; Baker-Herman, Tracy L ; Fuller, David D ; Bavis, Ryan W ; Zabka, Andrea G ; Golder, Francis J ; Doperalski, Nicholas J ; Johnson, Rebecca A ; Watters, Jyoti J</creator><creatorcontrib>Mitchell, Gordon S ; Baker-Herman, Tracy L ; Fuller, David D ; Bavis, Ryan W ; Zabka, Andrea G ; Golder, Francis J ; Doperalski, Nicholas J ; Johnson, Rebecca A ; Watters, Jyoti J</creatorcontrib><description>Intermittent hypoxia causes a form of serotonin-dependent synaptic plasticity in the spinal cord known as phrenic long-term facilitation (pLTF). Here we show that increased synthesis of brain-derived neurotrophic factor (BDNF) in the spinal cord is necessary and sufficient for pLTF in adult rats. We found that intermittent hypoxia elicited serotonin-dependent increases in BDNF synthesis in ventral spinal segments containing the phrenic nucleus, and the magnitude of these BDNF increases correlated with pLTF magnitude. We used RNA interference (RNAi) to interfere with BDNF expression, and tyrosine kinase receptor inhibition to block BDNF signaling. These disruptions blocked pLTF, whereas intrathecal injection of BDNF elicited an effect similar to pLTF. Our findings demonstrate new roles and regulatory mechanisms for BDNF in the spinal cord and suggest new therapeutic strategies for treating breathing disorders such as respiratory insufficiency after spinal injury. These experiments also illustrate the potential use of RNAi to investigate functional consequences of gene expression in the mammalian nervous system in vivo.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn1166</identifier><identifier>PMID: 14699417</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>Animals ; Brain-derived neurotrophic factor ; Brain-Derived Neurotrophic Factor - biosynthesis ; Genetic aspects ; Health aspects ; Hypoxia ; Hypoxia - metabolism ; Male ; Neuronal Plasticity - physiology ; Neuroplasticity ; Phrenic Nerve - metabolism ; Physiological aspects ; Rats ; Rats, Sprague-Dawley ; Respiration ; Spinal Cord - metabolism</subject><ispartof>Nature neuroscience, 2004-01, Vol.7 (1), p.48-55</ispartof><rights>COPYRIGHT 2004 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-9f2947922e3bc47f89c108323264de13df5d543a54fa1ac1b63aa5e27bc9a1203</citedby><cites>FETCH-LOGICAL-c427t-9f2947922e3bc47f89c108323264de13df5d543a54fa1ac1b63aa5e27bc9a1203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2728,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14699417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitchell, Gordon S</creatorcontrib><creatorcontrib>Baker-Herman, Tracy L</creatorcontrib><creatorcontrib>Fuller, David D</creatorcontrib><creatorcontrib>Bavis, Ryan W</creatorcontrib><creatorcontrib>Zabka, Andrea G</creatorcontrib><creatorcontrib>Golder, Francis J</creatorcontrib><creatorcontrib>Doperalski, Nicholas J</creatorcontrib><creatorcontrib>Johnson, Rebecca A</creatorcontrib><creatorcontrib>Watters, Jyoti J</creatorcontrib><title>BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><description>Intermittent hypoxia causes a form of serotonin-dependent synaptic plasticity in the spinal cord known as phrenic long-term facilitation (pLTF). Here we show that increased synthesis of brain-derived neurotrophic factor (BDNF) in the spinal cord is necessary and sufficient for pLTF in adult rats. We found that intermittent hypoxia elicited serotonin-dependent increases in BDNF synthesis in ventral spinal segments containing the phrenic nucleus, and the magnitude of these BDNF increases correlated with pLTF magnitude. We used RNA interference (RNAi) to interfere with BDNF expression, and tyrosine kinase receptor inhibition to block BDNF signaling. These disruptions blocked pLTF, whereas intrathecal injection of BDNF elicited an effect similar to pLTF. Our findings demonstrate new roles and regulatory mechanisms for BDNF in the spinal cord and suggest new therapeutic strategies for treating breathing disorders such as respiratory insufficiency after spinal injury. These experiments also illustrate the potential use of RNAi to investigate functional consequences of gene expression in the mammalian nervous system in vivo.</description><subject>Animals</subject><subject>Brain-derived neurotrophic factor</subject><subject>Brain-Derived Neurotrophic Factor - biosynthesis</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Male</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neuroplasticity</subject><subject>Phrenic Nerve - metabolism</subject><subject>Physiological aspects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Respiration</subject><subject>Spinal Cord - metabolism</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0UtrFTEUB_BBFPtQP4HI4KLgYmpOXjNZ1mq1UBR8rIdzM8k1ZSaZJhns_fbmcgelbiSLhPA7h5P8q-oFkHMgrHvrPYCUj6pjEFw20FL5uJyJahtJhTyqTlK6JYS0olNPqyPgUikO7XGF795_vqpdqr3RJiWMuxr9UKfFWqed8bm2IdZpdh7HOppyiJhDUfOIKReSd0WMY_jl_LZ2Pps4uZz3hT93c7h3-Kx6YnFM5vm6n1Y_rj58v_zU3Hz5eH15cdNoTtvcKEsVbxWlhm00b22nNJCOUUYlHwywwYpBcIaCWwTUsJEMURjabrRCoISdVmeHvnMMd4tJuZ9c0mYc0ZuwpL4rr28lZf-FoChwDlDg63_gbVhi-YjUU0EIJ7zbdzs_oC2OpnfehhxRlzWYyengjXXl_gI6IQSToisFbx4UFJPNfd7iklJ__e3rQ7uOqmNIKRrbz9FNJaQeSL_PvT_kXuCrddRlM5nhL1uDLuDlAXjMSzR_wFr_GzjbsNQ</recordid><startdate>20040101</startdate><enddate>20040101</enddate><creator>Mitchell, Gordon S</creator><creator>Baker-Herman, Tracy L</creator><creator>Fuller, David D</creator><creator>Bavis, Ryan W</creator><creator>Zabka, Andrea G</creator><creator>Golder, Francis J</creator><creator>Doperalski, Nicholas J</creator><creator>Johnson, Rebecca A</creator><creator>Watters, Jyoti J</creator><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20040101</creationdate><title>BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia</title><author>Mitchell, Gordon S ; Baker-Herman, Tracy L ; Fuller, David D ; Bavis, Ryan W ; Zabka, Andrea G ; Golder, Francis J ; Doperalski, Nicholas J ; Johnson, Rebecca A ; Watters, Jyoti J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-9f2947922e3bc47f89c108323264de13df5d543a54fa1ac1b63aa5e27bc9a1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Brain-derived neurotrophic factor</topic><topic>Brain-Derived Neurotrophic Factor - biosynthesis</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Male</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neuroplasticity</topic><topic>Phrenic Nerve - metabolism</topic><topic>Physiological aspects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Respiration</topic><topic>Spinal Cord - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitchell, Gordon S</creatorcontrib><creatorcontrib>Baker-Herman, Tracy L</creatorcontrib><creatorcontrib>Fuller, David D</creatorcontrib><creatorcontrib>Bavis, Ryan W</creatorcontrib><creatorcontrib>Zabka, Andrea G</creatorcontrib><creatorcontrib>Golder, Francis J</creatorcontrib><creatorcontrib>Doperalski, Nicholas J</creatorcontrib><creatorcontrib>Johnson, Rebecca A</creatorcontrib><creatorcontrib>Watters, Jyoti J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitchell, Gordon S</au><au>Baker-Herman, Tracy L</au><au>Fuller, David D</au><au>Bavis, Ryan W</au><au>Zabka, Andrea G</au><au>Golder, Francis J</au><au>Doperalski, Nicholas J</au><au>Johnson, Rebecca A</au><au>Watters, Jyoti J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia</atitle><jtitle>Nature neuroscience</jtitle><addtitle>Nat Neurosci</addtitle><date>2004-01-01</date><risdate>2004</risdate><volume>7</volume><issue>1</issue><spage>48</spage><epage>55</epage><pages>48-55</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Intermittent hypoxia causes a form of serotonin-dependent synaptic plasticity in the spinal cord known as phrenic long-term facilitation (pLTF). Here we show that increased synthesis of brain-derived neurotrophic factor (BDNF) in the spinal cord is necessary and sufficient for pLTF in adult rats. We found that intermittent hypoxia elicited serotonin-dependent increases in BDNF synthesis in ventral spinal segments containing the phrenic nucleus, and the magnitude of these BDNF increases correlated with pLTF magnitude. We used RNA interference (RNAi) to interfere with BDNF expression, and tyrosine kinase receptor inhibition to block BDNF signaling. These disruptions blocked pLTF, whereas intrathecal injection of BDNF elicited an effect similar to pLTF. Our findings demonstrate new roles and regulatory mechanisms for BDNF in the spinal cord and suggest new therapeutic strategies for treating breathing disorders such as respiratory insufficiency after spinal injury. These experiments also illustrate the potential use of RNAi to investigate functional consequences of gene expression in the mammalian nervous system in vivo.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><pmid>14699417</pmid><doi>10.1038/nn1166</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2004-01, Vol.7 (1), p.48-55 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_80077623 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | Animals Brain-derived neurotrophic factor Brain-Derived Neurotrophic Factor - biosynthesis Genetic aspects Health aspects Hypoxia Hypoxia - metabolism Male Neuronal Plasticity - physiology Neuroplasticity Phrenic Nerve - metabolism Physiological aspects Rats Rats, Sprague-Dawley Respiration Spinal Cord - metabolism |
title | BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BDNF%20is%20necessary%20and%20sufficient%20for%20spinal%20respiratory%20plasticity%20following%20intermittent%20hypoxia&rft.jtitle=Nature%20neuroscience&rft.au=Mitchell,%20Gordon%20S&rft.date=2004-01-01&rft.volume=7&rft.issue=1&rft.spage=48&rft.epage=55&rft.pages=48-55&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn1166&rft_dat=%3Cgale_proqu%3EA185553658%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=250040483&rft_id=info:pmid/14699417&rft_galeid=A185553658&rfr_iscdi=true |