Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites

A bio-fermentation technique was used for the in vivo diversification of flavonoid structures based on expression in Escherichia coli of six O-methyltransferases (OMTs) from Mentha x piperita and one O-glucosyltransferase (GT) each from Arabidopsis thaliana and Allium cepa. Enzymes were shown to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytochemistry (Oxford) 2004, Vol.65 (1), p.31-41
Hauptverfasser: Willits, M.G, Giovanni, M, Prata, R.T.N, Kramer, C.M, Luca, V. de, Steffens, J.C, Graser, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 31
container_title Phytochemistry (Oxford)
container_volume 65
creator Willits, M.G
Giovanni, M
Prata, R.T.N
Kramer, C.M
Luca, V. de
Steffens, J.C
Graser, G
description A bio-fermentation technique was used for the in vivo diversification of flavonoid structures based on expression in Escherichia coli of six O-methyltransferases (OMTs) from Mentha x piperita and one O-glucosyltransferase (GT) each from Arabidopsis thaliana and Allium cepa. Enzymes were shown to be regio-specific in in vitro experiments and modified a broad range of flavonoid substrates at various positions. Using the flavonol quercetin as a model substrate, we show that the product spectrum produced with the in vivo approach is identical to that found in vitro. Additionally, using mixed cultures of E. coli expressing different classes of modifying genes (OMTs and GTs), the production of polymethylated flavonoid glucosides was observed. This report demonstrates the potential to increase the structural diversity of plant secondary metabolites using a multi-enzyme, bio-fermentation approach.
doi_str_mv 10.1016/j.phytochem.2003.10.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80075068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17851221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-cbfd09ed9c69a85acd29e7e178a45ab937108544bb5095b7ada7eebe8de520d23</originalsourceid><addsrcrecordid>eNqF0c1u3CAQAGBUtWq2aV-h8aW5eTNgY6C3Nkp_pEg9tDmjMQwJK9tsjXfVvH1Y7So59gIS8w2jmWHsgsOaA--uNuvtw-OS3AONawHQlNc1gHzFVlyrpm4UwGu2KgFem1aIM_Yu5w0UIbvuLTvjbWeU6MyK3X-NqQ40jzQtuMQ0VSlUY_IxRPJVGHCfphR9_lzhVNE_HLcDHUicqn3cp8rHPc25aPecncmlyeP8WI20YJ-GuFB-z94EHDJ9ON3n7O7bzZ_rH_Xtr-8_r7_c1q7tYKldHzwY8sZ1BrVE54UhRVxpbCX2plEctGzbvpdgZK_QoyLqSXuSArxoztnl8d_tnP7uKC92jNnRMOBEaZetBlASOv1fWEpKLgQvUB2hm1POMwW7neNY2rMc7GEZdmOfl2EPyzgEyqhL5sdTiV0_kn_JO02_gE8ngNnhEGacXMwvTjba6EYVd3F0AZPF-7mYu98CeANgWl6O5gnw9aFe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17851221</pqid></control><display><type>article</type><title>Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Willits, M.G ; Giovanni, M ; Prata, R.T.N ; Kramer, C.M ; Luca, V. de ; Steffens, J.C ; Graser, G</creator><creatorcontrib>Willits, M.G ; Giovanni, M ; Prata, R.T.N ; Kramer, C.M ; Luca, V. de ; Steffens, J.C ; Graser, G</creatorcontrib><description>A bio-fermentation technique was used for the in vivo diversification of flavonoid structures based on expression in Escherichia coli of six O-methyltransferases (OMTs) from Mentha x piperita and one O-glucosyltransferase (GT) each from Arabidopsis thaliana and Allium cepa. Enzymes were shown to be regio-specific in in vitro experiments and modified a broad range of flavonoid substrates at various positions. Using the flavonol quercetin as a model substrate, we show that the product spectrum produced with the in vivo approach is identical to that found in vitro. Additionally, using mixed cultures of E. coli expressing different classes of modifying genes (OMTs and GTs), the production of polymethylated flavonoid glucosides was observed. This report demonstrates the potential to increase the structural diversity of plant secondary metabolites using a multi-enzyme, bio-fermentation approach.</description><identifier>ISSN: 0031-9422</identifier><identifier>EISSN: 1873-3700</identifier><identifier>DOI: 10.1016/j.phytochem.2003.10.005</identifier><identifier>PMID: 14697269</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Allium cepa ; Amino Acid Sequence ; amino acid sequences ; Arabidopsis - enzymology ; Arabidopsis thaliana ; Biological and medical sciences ; chemical structure ; Cloning, Molecular ; Consensus Sequence ; enzyme substrates ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fermentation ; flavonoids ; Flavonoids - chemistry ; Flavonoids - metabolism ; Fundamental and applied biological sciences. Psychology ; glucosyltransferases ; Glucosyltransferases - chemistry ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; Mentha ; Mentha piperita - enzymology ; Mentha piperita nothosubsp. piperita ; Metabolism ; methyltransferases ; Methyltransferases - chemistry ; Methyltransferases - genetics ; Methyltransferases - metabolism ; mint ; Molecular Sequence Data ; nucleotide sequences ; Onions - enzymology ; Phylogeny ; Plant physiology and development ; plant proteins ; quercetin ; recombinant proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; secondary metabolites ; Sequence Alignment ; sequence analysis ; Sequence Homology, Amino Acid ; Stereoisomerism ; Substrate Specificity</subject><ispartof>Phytochemistry (Oxford), 2004, Vol.65 (1), p.31-41</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-cbfd09ed9c69a85acd29e7e178a45ab937108544bb5095b7ada7eebe8de520d23</citedby><cites>FETCH-LOGICAL-c460t-cbfd09ed9c69a85acd29e7e178a45ab937108544bb5095b7ada7eebe8de520d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15389837$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14697269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willits, M.G</creatorcontrib><creatorcontrib>Giovanni, M</creatorcontrib><creatorcontrib>Prata, R.T.N</creatorcontrib><creatorcontrib>Kramer, C.M</creatorcontrib><creatorcontrib>Luca, V. de</creatorcontrib><creatorcontrib>Steffens, J.C</creatorcontrib><creatorcontrib>Graser, G</creatorcontrib><title>Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites</title><title>Phytochemistry (Oxford)</title><addtitle>Phytochemistry</addtitle><description>A bio-fermentation technique was used for the in vivo diversification of flavonoid structures based on expression in Escherichia coli of six O-methyltransferases (OMTs) from Mentha x piperita and one O-glucosyltransferase (GT) each from Arabidopsis thaliana and Allium cepa. Enzymes were shown to be regio-specific in in vitro experiments and modified a broad range of flavonoid substrates at various positions. Using the flavonol quercetin as a model substrate, we show that the product spectrum produced with the in vivo approach is identical to that found in vitro. Additionally, using mixed cultures of E. coli expressing different classes of modifying genes (OMTs and GTs), the production of polymethylated flavonoid glucosides was observed. This report demonstrates the potential to increase the structural diversity of plant secondary metabolites using a multi-enzyme, bio-fermentation approach.</description><subject>Allium cepa</subject><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>chemical structure</subject><subject>Cloning, Molecular</subject><subject>Consensus Sequence</subject><subject>enzyme substrates</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fermentation</subject><subject>flavonoids</subject><subject>Flavonoids - chemistry</subject><subject>Flavonoids - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glucosyltransferases</subject><subject>Glucosyltransferases - chemistry</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>Mentha</subject><subject>Mentha piperita - enzymology</subject><subject>Mentha piperita nothosubsp. piperita</subject><subject>Metabolism</subject><subject>methyltransferases</subject><subject>Methyltransferases - chemistry</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>mint</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequences</subject><subject>Onions - enzymology</subject><subject>Phylogeny</subject><subject>Plant physiology and development</subject><subject>plant proteins</subject><subject>quercetin</subject><subject>recombinant proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>secondary metabolites</subject><subject>Sequence Alignment</subject><subject>sequence analysis</subject><subject>Sequence Homology, Amino Acid</subject><subject>Stereoisomerism</subject><subject>Substrate Specificity</subject><issn>0031-9422</issn><issn>1873-3700</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1u3CAQAGBUtWq2aV-h8aW5eTNgY6C3Nkp_pEg9tDmjMQwJK9tsjXfVvH1Y7So59gIS8w2jmWHsgsOaA--uNuvtw-OS3AONawHQlNc1gHzFVlyrpm4UwGu2KgFem1aIM_Yu5w0UIbvuLTvjbWeU6MyK3X-NqQ40jzQtuMQ0VSlUY_IxRPJVGHCfphR9_lzhVNE_HLcDHUicqn3cp8rHPc25aPecncmlyeP8WI20YJ-GuFB-z94EHDJ9ON3n7O7bzZ_rH_Xtr-8_r7_c1q7tYKldHzwY8sZ1BrVE54UhRVxpbCX2plEctGzbvpdgZK_QoyLqSXuSArxoztnl8d_tnP7uKC92jNnRMOBEaZetBlASOv1fWEpKLgQvUB2hm1POMwW7neNY2rMc7GEZdmOfl2EPyzgEyqhL5sdTiV0_kn_JO02_gE8ngNnhEGacXMwvTjba6EYVd3F0AZPF-7mYu98CeANgWl6O5gnw9aFe</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Willits, M.G</creator><creator>Giovanni, M</creator><creator>Prata, R.T.N</creator><creator>Kramer, C.M</creator><creator>Luca, V. de</creator><creator>Steffens, J.C</creator><creator>Graser, G</creator><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites</title><author>Willits, M.G ; Giovanni, M ; Prata, R.T.N ; Kramer, C.M ; Luca, V. de ; Steffens, J.C ; Graser, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-cbfd09ed9c69a85acd29e7e178a45ab937108544bb5095b7ada7eebe8de520d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Allium cepa</topic><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>chemical structure</topic><topic>Cloning, Molecular</topic><topic>Consensus Sequence</topic><topic>enzyme substrates</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fermentation</topic><topic>flavonoids</topic><topic>Flavonoids - chemistry</topic><topic>Flavonoids - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glucosyltransferases</topic><topic>Glucosyltransferases - chemistry</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>Mentha</topic><topic>Mentha piperita - enzymology</topic><topic>Mentha piperita nothosubsp. piperita</topic><topic>Metabolism</topic><topic>methyltransferases</topic><topic>Methyltransferases - chemistry</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>mint</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequences</topic><topic>Onions - enzymology</topic><topic>Phylogeny</topic><topic>Plant physiology and development</topic><topic>plant proteins</topic><topic>quercetin</topic><topic>recombinant proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>secondary metabolites</topic><topic>Sequence Alignment</topic><topic>sequence analysis</topic><topic>Sequence Homology, Amino Acid</topic><topic>Stereoisomerism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willits, M.G</creatorcontrib><creatorcontrib>Giovanni, M</creatorcontrib><creatorcontrib>Prata, R.T.N</creatorcontrib><creatorcontrib>Kramer, C.M</creatorcontrib><creatorcontrib>Luca, V. de</creatorcontrib><creatorcontrib>Steffens, J.C</creatorcontrib><creatorcontrib>Graser, G</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Phytochemistry (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willits, M.G</au><au>Giovanni, M</au><au>Prata, R.T.N</au><au>Kramer, C.M</au><au>Luca, V. de</au><au>Steffens, J.C</au><au>Graser, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites</atitle><jtitle>Phytochemistry (Oxford)</jtitle><addtitle>Phytochemistry</addtitle><date>2004</date><risdate>2004</risdate><volume>65</volume><issue>1</issue><spage>31</spage><epage>41</epage><pages>31-41</pages><issn>0031-9422</issn><eissn>1873-3700</eissn><abstract>A bio-fermentation technique was used for the in vivo diversification of flavonoid structures based on expression in Escherichia coli of six O-methyltransferases (OMTs) from Mentha x piperita and one O-glucosyltransferase (GT) each from Arabidopsis thaliana and Allium cepa. Enzymes were shown to be regio-specific in in vitro experiments and modified a broad range of flavonoid substrates at various positions. Using the flavonol quercetin as a model substrate, we show that the product spectrum produced with the in vivo approach is identical to that found in vitro. Additionally, using mixed cultures of E. coli expressing different classes of modifying genes (OMTs and GTs), the production of polymethylated flavonoid glucosides was observed. This report demonstrates the potential to increase the structural diversity of plant secondary metabolites using a multi-enzyme, bio-fermentation approach.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><pmid>14697269</pmid><doi>10.1016/j.phytochem.2003.10.005</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9422
ispartof Phytochemistry (Oxford), 2004, Vol.65 (1), p.31-41
issn 0031-9422
1873-3700
language eng
recordid cdi_proquest_miscellaneous_80075068
source MEDLINE; Elsevier ScienceDirect Journals
subjects Allium cepa
Amino Acid Sequence
amino acid sequences
Arabidopsis - enzymology
Arabidopsis thaliana
Biological and medical sciences
chemical structure
Cloning, Molecular
Consensus Sequence
enzyme substrates
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Fermentation
flavonoids
Flavonoids - chemistry
Flavonoids - metabolism
Fundamental and applied biological sciences. Psychology
glucosyltransferases
Glucosyltransferases - chemistry
Glucosyltransferases - genetics
Glucosyltransferases - metabolism
Mentha
Mentha piperita - enzymology
Mentha piperita nothosubsp. piperita
Metabolism
methyltransferases
Methyltransferases - chemistry
Methyltransferases - genetics
Methyltransferases - metabolism
mint
Molecular Sequence Data
nucleotide sequences
Onions - enzymology
Phylogeny
Plant physiology and development
plant proteins
quercetin
recombinant proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
secondary metabolites
Sequence Alignment
sequence analysis
Sequence Homology, Amino Acid
Stereoisomerism
Substrate Specificity
title Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-fermentation%20of%20modified%20flavonoids:%20an%20example%20of%20in%20vivo%20diversification%20of%20secondary%20metabolites&rft.jtitle=Phytochemistry%20(Oxford)&rft.au=Willits,%20M.G&rft.date=2004&rft.volume=65&rft.issue=1&rft.spage=31&rft.epage=41&rft.pages=31-41&rft.issn=0031-9422&rft.eissn=1873-3700&rft_id=info:doi/10.1016/j.phytochem.2003.10.005&rft_dat=%3Cproquest_cross%3E17851221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17851221&rft_id=info:pmid/14697269&rfr_iscdi=true