Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites
A bio-fermentation technique was used for the in vivo diversification of flavonoid structures based on expression in Escherichia coli of six O-methyltransferases (OMTs) from Mentha x piperita and one O-glucosyltransferase (GT) each from Arabidopsis thaliana and Allium cepa. Enzymes were shown to be...
Gespeichert in:
Veröffentlicht in: | Phytochemistry (Oxford) 2004, Vol.65 (1), p.31-41 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Phytochemistry (Oxford) |
container_volume | 65 |
creator | Willits, M.G Giovanni, M Prata, R.T.N Kramer, C.M Luca, V. de Steffens, J.C Graser, G |
description | A bio-fermentation technique was used for the in vivo diversification of flavonoid structures based on expression in Escherichia coli of six O-methyltransferases (OMTs) from Mentha x piperita and one O-glucosyltransferase (GT) each from Arabidopsis thaliana and Allium cepa. Enzymes were shown to be regio-specific in in vitro experiments and modified a broad range of flavonoid substrates at various positions. Using the flavonol quercetin as a model substrate, we show that the product spectrum produced with the in vivo approach is identical to that found in vitro. Additionally, using mixed cultures of E. coli expressing different classes of modifying genes (OMTs and GTs), the production of polymethylated flavonoid glucosides was observed. This report demonstrates the potential to increase the structural diversity of plant secondary metabolites using a multi-enzyme, bio-fermentation approach. |
doi_str_mv | 10.1016/j.phytochem.2003.10.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80075068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17851221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-cbfd09ed9c69a85acd29e7e178a45ab937108544bb5095b7ada7eebe8de520d23</originalsourceid><addsrcrecordid>eNqF0c1u3CAQAGBUtWq2aV-h8aW5eTNgY6C3Nkp_pEg9tDmjMQwJK9tsjXfVvH1Y7So59gIS8w2jmWHsgsOaA--uNuvtw-OS3AONawHQlNc1gHzFVlyrpm4UwGu2KgFem1aIM_Yu5w0UIbvuLTvjbWeU6MyK3X-NqQ40jzQtuMQ0VSlUY_IxRPJVGHCfphR9_lzhVNE_HLcDHUicqn3cp8rHPc25aPecncmlyeP8WI20YJ-GuFB-z94EHDJ9ON3n7O7bzZ_rH_Xtr-8_r7_c1q7tYKldHzwY8sZ1BrVE54UhRVxpbCX2plEctGzbvpdgZK_QoyLqSXuSArxoztnl8d_tnP7uKC92jNnRMOBEaZetBlASOv1fWEpKLgQvUB2hm1POMwW7neNY2rMc7GEZdmOfl2EPyzgEyqhL5sdTiV0_kn_JO02_gE8ngNnhEGacXMwvTjba6EYVd3F0AZPF-7mYu98CeANgWl6O5gnw9aFe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17851221</pqid></control><display><type>article</type><title>Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Willits, M.G ; Giovanni, M ; Prata, R.T.N ; Kramer, C.M ; Luca, V. de ; Steffens, J.C ; Graser, G</creator><creatorcontrib>Willits, M.G ; Giovanni, M ; Prata, R.T.N ; Kramer, C.M ; Luca, V. de ; Steffens, J.C ; Graser, G</creatorcontrib><description>A bio-fermentation technique was used for the in vivo diversification of flavonoid structures based on expression in Escherichia coli of six O-methyltransferases (OMTs) from Mentha x piperita and one O-glucosyltransferase (GT) each from Arabidopsis thaliana and Allium cepa. Enzymes were shown to be regio-specific in in vitro experiments and modified a broad range of flavonoid substrates at various positions. Using the flavonol quercetin as a model substrate, we show that the product spectrum produced with the in vivo approach is identical to that found in vitro. Additionally, using mixed cultures of E. coli expressing different classes of modifying genes (OMTs and GTs), the production of polymethylated flavonoid glucosides was observed. This report demonstrates the potential to increase the structural diversity of plant secondary metabolites using a multi-enzyme, bio-fermentation approach.</description><identifier>ISSN: 0031-9422</identifier><identifier>EISSN: 1873-3700</identifier><identifier>DOI: 10.1016/j.phytochem.2003.10.005</identifier><identifier>PMID: 14697269</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Allium cepa ; Amino Acid Sequence ; amino acid sequences ; Arabidopsis - enzymology ; Arabidopsis thaliana ; Biological and medical sciences ; chemical structure ; Cloning, Molecular ; Consensus Sequence ; enzyme substrates ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fermentation ; flavonoids ; Flavonoids - chemistry ; Flavonoids - metabolism ; Fundamental and applied biological sciences. Psychology ; glucosyltransferases ; Glucosyltransferases - chemistry ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; Mentha ; Mentha piperita - enzymology ; Mentha piperita nothosubsp. piperita ; Metabolism ; methyltransferases ; Methyltransferases - chemistry ; Methyltransferases - genetics ; Methyltransferases - metabolism ; mint ; Molecular Sequence Data ; nucleotide sequences ; Onions - enzymology ; Phylogeny ; Plant physiology and development ; plant proteins ; quercetin ; recombinant proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; secondary metabolites ; Sequence Alignment ; sequence analysis ; Sequence Homology, Amino Acid ; Stereoisomerism ; Substrate Specificity</subject><ispartof>Phytochemistry (Oxford), 2004, Vol.65 (1), p.31-41</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-cbfd09ed9c69a85acd29e7e178a45ab937108544bb5095b7ada7eebe8de520d23</citedby><cites>FETCH-LOGICAL-c460t-cbfd09ed9c69a85acd29e7e178a45ab937108544bb5095b7ada7eebe8de520d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15389837$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14697269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Willits, M.G</creatorcontrib><creatorcontrib>Giovanni, M</creatorcontrib><creatorcontrib>Prata, R.T.N</creatorcontrib><creatorcontrib>Kramer, C.M</creatorcontrib><creatorcontrib>Luca, V. de</creatorcontrib><creatorcontrib>Steffens, J.C</creatorcontrib><creatorcontrib>Graser, G</creatorcontrib><title>Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites</title><title>Phytochemistry (Oxford)</title><addtitle>Phytochemistry</addtitle><description>A bio-fermentation technique was used for the in vivo diversification of flavonoid structures based on expression in Escherichia coli of six O-methyltransferases (OMTs) from Mentha x piperita and one O-glucosyltransferase (GT) each from Arabidopsis thaliana and Allium cepa. Enzymes were shown to be regio-specific in in vitro experiments and modified a broad range of flavonoid substrates at various positions. Using the flavonol quercetin as a model substrate, we show that the product spectrum produced with the in vivo approach is identical to that found in vitro. Additionally, using mixed cultures of E. coli expressing different classes of modifying genes (OMTs and GTs), the production of polymethylated flavonoid glucosides was observed. This report demonstrates the potential to increase the structural diversity of plant secondary metabolites using a multi-enzyme, bio-fermentation approach.</description><subject>Allium cepa</subject><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>chemical structure</subject><subject>Cloning, Molecular</subject><subject>Consensus Sequence</subject><subject>enzyme substrates</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fermentation</subject><subject>flavonoids</subject><subject>Flavonoids - chemistry</subject><subject>Flavonoids - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glucosyltransferases</subject><subject>Glucosyltransferases - chemistry</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>Mentha</subject><subject>Mentha piperita - enzymology</subject><subject>Mentha piperita nothosubsp. piperita</subject><subject>Metabolism</subject><subject>methyltransferases</subject><subject>Methyltransferases - chemistry</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>mint</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequences</subject><subject>Onions - enzymology</subject><subject>Phylogeny</subject><subject>Plant physiology and development</subject><subject>plant proteins</subject><subject>quercetin</subject><subject>recombinant proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>secondary metabolites</subject><subject>Sequence Alignment</subject><subject>sequence analysis</subject><subject>Sequence Homology, Amino Acid</subject><subject>Stereoisomerism</subject><subject>Substrate Specificity</subject><issn>0031-9422</issn><issn>1873-3700</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c1u3CAQAGBUtWq2aV-h8aW5eTNgY6C3Nkp_pEg9tDmjMQwJK9tsjXfVvH1Y7So59gIS8w2jmWHsgsOaA--uNuvtw-OS3AONawHQlNc1gHzFVlyrpm4UwGu2KgFem1aIM_Yu5w0UIbvuLTvjbWeU6MyK3X-NqQ40jzQtuMQ0VSlUY_IxRPJVGHCfphR9_lzhVNE_HLcDHUicqn3cp8rHPc25aPecncmlyeP8WI20YJ-GuFB-z94EHDJ9ON3n7O7bzZ_rH_Xtr-8_r7_c1q7tYKldHzwY8sZ1BrVE54UhRVxpbCX2plEctGzbvpdgZK_QoyLqSXuSArxoztnl8d_tnP7uKC92jNnRMOBEaZetBlASOv1fWEpKLgQvUB2hm1POMwW7neNY2rMc7GEZdmOfl2EPyzgEyqhL5sdTiV0_kn_JO02_gE8ngNnhEGacXMwvTjba6EYVd3F0AZPF-7mYu98CeANgWl6O5gnw9aFe</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Willits, M.G</creator><creator>Giovanni, M</creator><creator>Prata, R.T.N</creator><creator>Kramer, C.M</creator><creator>Luca, V. de</creator><creator>Steffens, J.C</creator><creator>Graser, G</creator><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites</title><author>Willits, M.G ; Giovanni, M ; Prata, R.T.N ; Kramer, C.M ; Luca, V. de ; Steffens, J.C ; Graser, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-cbfd09ed9c69a85acd29e7e178a45ab937108544bb5095b7ada7eebe8de520d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Allium cepa</topic><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>chemical structure</topic><topic>Cloning, Molecular</topic><topic>Consensus Sequence</topic><topic>enzyme substrates</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fermentation</topic><topic>flavonoids</topic><topic>Flavonoids - chemistry</topic><topic>Flavonoids - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glucosyltransferases</topic><topic>Glucosyltransferases - chemistry</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>Mentha</topic><topic>Mentha piperita - enzymology</topic><topic>Mentha piperita nothosubsp. piperita</topic><topic>Metabolism</topic><topic>methyltransferases</topic><topic>Methyltransferases - chemistry</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>mint</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequences</topic><topic>Onions - enzymology</topic><topic>Phylogeny</topic><topic>Plant physiology and development</topic><topic>plant proteins</topic><topic>quercetin</topic><topic>recombinant proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>secondary metabolites</topic><topic>Sequence Alignment</topic><topic>sequence analysis</topic><topic>Sequence Homology, Amino Acid</topic><topic>Stereoisomerism</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Willits, M.G</creatorcontrib><creatorcontrib>Giovanni, M</creatorcontrib><creatorcontrib>Prata, R.T.N</creatorcontrib><creatorcontrib>Kramer, C.M</creatorcontrib><creatorcontrib>Luca, V. de</creatorcontrib><creatorcontrib>Steffens, J.C</creatorcontrib><creatorcontrib>Graser, G</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Phytochemistry (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Willits, M.G</au><au>Giovanni, M</au><au>Prata, R.T.N</au><au>Kramer, C.M</au><au>Luca, V. de</au><au>Steffens, J.C</au><au>Graser, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites</atitle><jtitle>Phytochemistry (Oxford)</jtitle><addtitle>Phytochemistry</addtitle><date>2004</date><risdate>2004</risdate><volume>65</volume><issue>1</issue><spage>31</spage><epage>41</epage><pages>31-41</pages><issn>0031-9422</issn><eissn>1873-3700</eissn><abstract>A bio-fermentation technique was used for the in vivo diversification of flavonoid structures based on expression in Escherichia coli of six O-methyltransferases (OMTs) from Mentha x piperita and one O-glucosyltransferase (GT) each from Arabidopsis thaliana and Allium cepa. Enzymes were shown to be regio-specific in in vitro experiments and modified a broad range of flavonoid substrates at various positions. Using the flavonol quercetin as a model substrate, we show that the product spectrum produced with the in vivo approach is identical to that found in vitro. Additionally, using mixed cultures of E. coli expressing different classes of modifying genes (OMTs and GTs), the production of polymethylated flavonoid glucosides was observed. This report demonstrates the potential to increase the structural diversity of plant secondary metabolites using a multi-enzyme, bio-fermentation approach.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><pmid>14697269</pmid><doi>10.1016/j.phytochem.2003.10.005</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9422 |
ispartof | Phytochemistry (Oxford), 2004, Vol.65 (1), p.31-41 |
issn | 0031-9422 1873-3700 |
language | eng |
recordid | cdi_proquest_miscellaneous_80075068 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Allium cepa Amino Acid Sequence amino acid sequences Arabidopsis - enzymology Arabidopsis thaliana Biological and medical sciences chemical structure Cloning, Molecular Consensus Sequence enzyme substrates Enzymes Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Fermentation flavonoids Flavonoids - chemistry Flavonoids - metabolism Fundamental and applied biological sciences. Psychology glucosyltransferases Glucosyltransferases - chemistry Glucosyltransferases - genetics Glucosyltransferases - metabolism Mentha Mentha piperita - enzymology Mentha piperita nothosubsp. piperita Metabolism methyltransferases Methyltransferases - chemistry Methyltransferases - genetics Methyltransferases - metabolism mint Molecular Sequence Data nucleotide sequences Onions - enzymology Phylogeny Plant physiology and development plant proteins quercetin recombinant proteins Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism secondary metabolites Sequence Alignment sequence analysis Sequence Homology, Amino Acid Stereoisomerism Substrate Specificity |
title | Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A07%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-fermentation%20of%20modified%20flavonoids:%20an%20example%20of%20in%20vivo%20diversification%20of%20secondary%20metabolites&rft.jtitle=Phytochemistry%20(Oxford)&rft.au=Willits,%20M.G&rft.date=2004&rft.volume=65&rft.issue=1&rft.spage=31&rft.epage=41&rft.pages=31-41&rft.issn=0031-9422&rft.eissn=1873-3700&rft_id=info:doi/10.1016/j.phytochem.2003.10.005&rft_dat=%3Cproquest_cross%3E17851221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17851221&rft_id=info:pmid/14697269&rfr_iscdi=true |