A diagnostic expert system for colonic lesions

The diagnostic expert system for colonic lesions (DESCL) was designed to discriminate colonic adenoma and adenocarcinoma from normal colonic tissue. Although it was originally developed for use in conjunction with a machine vision analytic system, the DESCL has evolved into a teaching tool and a mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of clinical pathology 1990-10, Vol.94 (4 Suppl 1), p.S15-S18
Hauptverfasser: Graham, A R, Paplanus, S H, Bartels, P H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S18
container_issue 4 Suppl 1
container_start_page S15
container_title American journal of clinical pathology
container_volume 94
creator Graham, A R
Paplanus, S H
Bartels, P H
description The diagnostic expert system for colonic lesions (DESCL) was designed to discriminate colonic adenoma and adenocarcinoma from normal colonic tissue. Although it was originally developed for use in conjunction with a machine vision analytic system, the DESCL has evolved into a teaching tool and a model for conceptual machine learning. The expert system is table driven and consists of a shell and a knowledge base. The latter comprises a series of architectural and cytologic observations and a quantitative estimate of diagnostic importance relating these observations to diagnostic outcome. In a validation study of 100 colonic lesions, the expert system achieved a success rate of 98%. It has the flexibility to allow individual pathologists to "customize" the knowledge base to suit their diagnostic criteria.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_80067173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25628965</sourcerecordid><originalsourceid>FETCH-LOGICAL-p237t-7098a274b7faaae6168da6f4d420ce86feb158fe58fde47199431f10760aa533</originalsourceid><addsrcrecordid>eNqFkDtrw0AQhK9IcBzHPyGgKp3C3kN3p9KYvMCQxr1YSXtBRtIpWgnifx9B1KcYppiPgZkbsQUAlebS6Ttxz3wBkMqD2YiNUgqsh614PiR1g1995KmpEvoZaJwSvvJEXRLimFSxjf2StMRN7PlB3AZsmfar78T59eV8fE9Pn28fx8MpHZR2U-og96icKV1ARLLS-hptMLVRUJG3gUqZ-UCLajJO5rnRMkhwFhAzrXfi6a92GOP3TDwVXcMVtS32FGcuPIB1y6x_QZVZ5XObLeDjCs5lR3UxjE2H47VYj9C_aEhXnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25628965</pqid></control><display><type>article</type><title>A diagnostic expert system for colonic lesions</title><source>MEDLINE</source><source>Oxford University Press Archive</source><creator>Graham, A R ; Paplanus, S H ; Bartels, P H</creator><creatorcontrib>Graham, A R ; Paplanus, S H ; Bartels, P H</creatorcontrib><description>The diagnostic expert system for colonic lesions (DESCL) was designed to discriminate colonic adenoma and adenocarcinoma from normal colonic tissue. Although it was originally developed for use in conjunction with a machine vision analytic system, the DESCL has evolved into a teaching tool and a model for conceptual machine learning. The expert system is table driven and consists of a shell and a knowledge base. The latter comprises a series of architectural and cytologic observations and a quantitative estimate of diagnostic importance relating these observations to diagnostic outcome. In a validation study of 100 colonic lesions, the expert system achieved a success rate of 98%. It has the flexibility to allow individual pathologists to "customize" the knowledge base to suit their diagnostic criteria.</description><identifier>ISSN: 0002-9173</identifier><identifier>PMID: 2220680</identifier><language>eng</language><publisher>England</publisher><subject>Adenocarcinoma - diagnosis ; Adenoma - diagnosis ; Colonic Neoplasms - diagnosis ; Diagnosis, Computer-Assisted ; Expert Systems ; Humans</subject><ispartof>American journal of clinical pathology, 1990-10, Vol.94 (4 Suppl 1), p.S15-S18</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2220680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Graham, A R</creatorcontrib><creatorcontrib>Paplanus, S H</creatorcontrib><creatorcontrib>Bartels, P H</creatorcontrib><title>A diagnostic expert system for colonic lesions</title><title>American journal of clinical pathology</title><addtitle>Am J Clin Pathol</addtitle><description>The diagnostic expert system for colonic lesions (DESCL) was designed to discriminate colonic adenoma and adenocarcinoma from normal colonic tissue. Although it was originally developed for use in conjunction with a machine vision analytic system, the DESCL has evolved into a teaching tool and a model for conceptual machine learning. The expert system is table driven and consists of a shell and a knowledge base. The latter comprises a series of architectural and cytologic observations and a quantitative estimate of diagnostic importance relating these observations to diagnostic outcome. In a validation study of 100 colonic lesions, the expert system achieved a success rate of 98%. It has the flexibility to allow individual pathologists to "customize" the knowledge base to suit their diagnostic criteria.</description><subject>Adenocarcinoma - diagnosis</subject><subject>Adenoma - diagnosis</subject><subject>Colonic Neoplasms - diagnosis</subject><subject>Diagnosis, Computer-Assisted</subject><subject>Expert Systems</subject><subject>Humans</subject><issn>0002-9173</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtrw0AQhK9IcBzHPyGgKp3C3kN3p9KYvMCQxr1YSXtBRtIpWgnifx9B1KcYppiPgZkbsQUAlebS6Ttxz3wBkMqD2YiNUgqsh614PiR1g1995KmpEvoZaJwSvvJEXRLimFSxjf2StMRN7PlB3AZsmfar78T59eV8fE9Pn28fx8MpHZR2U-og96icKV1ARLLS-hptMLVRUJG3gUqZ-UCLajJO5rnRMkhwFhAzrXfi6a92GOP3TDwVXcMVtS32FGcuPIB1y6x_QZVZ5XObLeDjCs5lR3UxjE2H47VYj9C_aEhXnQ</recordid><startdate>19901001</startdate><enddate>19901001</enddate><creator>Graham, A R</creator><creator>Paplanus, S H</creator><creator>Bartels, P H</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19901001</creationdate><title>A diagnostic expert system for colonic lesions</title><author>Graham, A R ; Paplanus, S H ; Bartels, P H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p237t-7098a274b7faaae6168da6f4d420ce86feb158fe58fde47199431f10760aa533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Adenocarcinoma - diagnosis</topic><topic>Adenoma - diagnosis</topic><topic>Colonic Neoplasms - diagnosis</topic><topic>Diagnosis, Computer-Assisted</topic><topic>Expert Systems</topic><topic>Humans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Graham, A R</creatorcontrib><creatorcontrib>Paplanus, S H</creatorcontrib><creatorcontrib>Bartels, P H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of clinical pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graham, A R</au><au>Paplanus, S H</au><au>Bartels, P H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A diagnostic expert system for colonic lesions</atitle><jtitle>American journal of clinical pathology</jtitle><addtitle>Am J Clin Pathol</addtitle><date>1990-10-01</date><risdate>1990</risdate><volume>94</volume><issue>4 Suppl 1</issue><spage>S15</spage><epage>S18</epage><pages>S15-S18</pages><issn>0002-9173</issn><abstract>The diagnostic expert system for colonic lesions (DESCL) was designed to discriminate colonic adenoma and adenocarcinoma from normal colonic tissue. Although it was originally developed for use in conjunction with a machine vision analytic system, the DESCL has evolved into a teaching tool and a model for conceptual machine learning. The expert system is table driven and consists of a shell and a knowledge base. The latter comprises a series of architectural and cytologic observations and a quantitative estimate of diagnostic importance relating these observations to diagnostic outcome. In a validation study of 100 colonic lesions, the expert system achieved a success rate of 98%. It has the flexibility to allow individual pathologists to "customize" the knowledge base to suit their diagnostic criteria.</abstract><cop>England</cop><pmid>2220680</pmid></addata></record>
fulltext fulltext
identifier ISSN: 0002-9173
ispartof American journal of clinical pathology, 1990-10, Vol.94 (4 Suppl 1), p.S15-S18
issn 0002-9173
language eng
recordid cdi_proquest_miscellaneous_80067173
source MEDLINE; Oxford University Press Archive
subjects Adenocarcinoma - diagnosis
Adenoma - diagnosis
Colonic Neoplasms - diagnosis
Diagnosis, Computer-Assisted
Expert Systems
Humans
title A diagnostic expert system for colonic lesions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20diagnostic%20expert%20system%20for%20colonic%20lesions&rft.jtitle=American%20journal%20of%20clinical%20pathology&rft.au=Graham,%20A%20R&rft.date=1990-10-01&rft.volume=94&rft.issue=4%20Suppl%201&rft.spage=S15&rft.epage=S18&rft.pages=S15-S18&rft.issn=0002-9173&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E25628965%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25628965&rft_id=info:pmid/2220680&rfr_iscdi=true