Sample size calculations for paired or matched ordinal data

The problem of calculating the number of subjects in a paired or matched study in which the outcome variable is ordinal is discussed. A common approach in the case of a two category variable is to calculate the required number of discordant pairs, and then divide this by the expected proportion of d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 1998-07, Vol.17 (14), p.1635-1642
Hauptverfasser: Julious, S. A., Campbell, M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1642
container_issue 14
container_start_page 1635
container_title Statistics in medicine
container_volume 17
creator Julious, S. A.
Campbell, M. J.
description The problem of calculating the number of subjects in a paired or matched study in which the outcome variable is ordinal is discussed. A common approach in the case of a two category variable is to calculate the required number of discordant pairs, and then divide this by the expected proportion of discordant pairs to obtain the total sample size. An approximate solution for the number of discordant pairs is proposed for ordinal data and compared to sample sizes estimated through simulation. It is shown that the sample sizes are underestimated when the number of categories is two, but that the approximation improves as the number of categories increases. Comparison of the required discordant sample size when there are two categories with the required sample size for more than two categories would suggest that the loss of power is not great if a categorical variable is collapsed into only two categories. However, the total sample size required is likely to be greater with only two categories, since the expected proportion of discordant to concordant pairs increases. Since the expected number of discordant pairs is likely to decrease as the number of categories increases, this suggests that as a rule of thumb the required discordant sample size for the two category case be used as an approximation to the total required sample size when the number of categories is greater than two. © 1998 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/(SICI)1097-0258(19980730)17:14<1635::AID-SIM881>3.0.CO;2-K
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80065311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80065311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4411-af0f1b2882728f08e37209c66b59bdae33bca4e768f6c3d2240175b25012fcd3</originalsourceid><addsrcrecordid>eNqNkMGO0zAQhiMEWsrCIyDlgNDuIWXGjmOni5CWwJawhR66EqhCGjmOIwJJU-JUsDw9CQm9wIGTR55_Pv36PO8lwhwB2LOzTZqk5wixDIAJdYZxrEByOEe5wPA5RlwsFpfpq2CTvlMKX_A5zJP1BQuu73iz49ldbwZMyiCSKO57D5z7AoAomDzxTuIojhkXM-9io-t9ZX1X_rS-0ZU5VLorm53zi6b197psbe73U6078_n3mJc7Xfm57vRD716hK2cfTe-pd3P1-iZ5E6zWyzS5XAUmDBEDXUCBGVOKSaYKUJZLBrGJokzEWa4t55nRoZWRKiLDc8ZCQCkyJgBZYXJ-6j0dsfu2-XawrqO6dMZWld7Z5uBIAUSCI_bB7Rg0beNcawvat2Wt21tCoEEs0SCWBkM0GKI_YgklYUiDWKJeLI1iiRNQsiZG1z388dTikNU2P6Ink_3-ybTXrvdYtHpnSneMMc4jYKqPfRpj38vK3v5V8D_6_bPe9NPjgxFfus7-OOJ1-5UiyaWgD--XtArfbq-WW6SP_Be-K6-m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80065311</pqid></control><display><type>article</type><title>Sample size calculations for paired or matched ordinal data</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Julious, S. A. ; Campbell, M. J.</creator><creatorcontrib>Julious, S. A. ; Campbell, M. J.</creatorcontrib><description>The problem of calculating the number of subjects in a paired or matched study in which the outcome variable is ordinal is discussed. A common approach in the case of a two category variable is to calculate the required number of discordant pairs, and then divide this by the expected proportion of discordant pairs to obtain the total sample size. An approximate solution for the number of discordant pairs is proposed for ordinal data and compared to sample sizes estimated through simulation. It is shown that the sample sizes are underestimated when the number of categories is two, but that the approximation improves as the number of categories increases. Comparison of the required discordant sample size when there are two categories with the required sample size for more than two categories would suggest that the loss of power is not great if a categorical variable is collapsed into only two categories. However, the total sample size required is likely to be greater with only two categories, since the expected proportion of discordant to concordant pairs increases. Since the expected number of discordant pairs is likely to decrease as the number of categories increases, this suggests that as a rule of thumb the required discordant sample size for the two category case be used as an approximation to the total required sample size when the number of categories is greater than two. © 1998 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/(SICI)1097-0258(19980730)17:14&lt;1635::AID-SIM881&gt;3.0.CO;2-K</identifier><identifier>PMID: 9699235</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biological and medical sciences ; Clinical Trials as Topic - statistics &amp; numerical data ; Computerized, statistical medical data processing and models in biomedicine ; Cross-Over Studies ; Data Collection - statistics &amp; numerical data ; Data Interpretation, Statistical ; Humans ; Matched-Pair Analysis ; Mathematical Computing ; Medical sciences ; Medical statistics ; Sample Size</subject><ispartof>Statistics in medicine, 1998-07, Vol.17 (14), p.1635-1642</ispartof><rights>Copyright © 1998 John Wiley &amp; Sons, Ltd.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0258%2819980730%2917%3A14%3C1635%3A%3AAID-SIM881%3E3.0.CO%3B2-K$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0258%2819980730%2917%3A14%3C1635%3A%3AAID-SIM881%3E3.0.CO%3B2-K$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2336028$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9699235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Julious, S. A.</creatorcontrib><creatorcontrib>Campbell, M. J.</creatorcontrib><title>Sample size calculations for paired or matched ordinal data</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>The problem of calculating the number of subjects in a paired or matched study in which the outcome variable is ordinal is discussed. A common approach in the case of a two category variable is to calculate the required number of discordant pairs, and then divide this by the expected proportion of discordant pairs to obtain the total sample size. An approximate solution for the number of discordant pairs is proposed for ordinal data and compared to sample sizes estimated through simulation. It is shown that the sample sizes are underestimated when the number of categories is two, but that the approximation improves as the number of categories increases. Comparison of the required discordant sample size when there are two categories with the required sample size for more than two categories would suggest that the loss of power is not great if a categorical variable is collapsed into only two categories. However, the total sample size required is likely to be greater with only two categories, since the expected proportion of discordant to concordant pairs increases. Since the expected number of discordant pairs is likely to decrease as the number of categories increases, this suggests that as a rule of thumb the required discordant sample size for the two category case be used as an approximation to the total required sample size when the number of categories is greater than two. © 1998 John Wiley &amp; Sons, Ltd.</description><subject>Biological and medical sciences</subject><subject>Clinical Trials as Topic - statistics &amp; numerical data</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Cross-Over Studies</subject><subject>Data Collection - statistics &amp; numerical data</subject><subject>Data Interpretation, Statistical</subject><subject>Humans</subject><subject>Matched-Pair Analysis</subject><subject>Mathematical Computing</subject><subject>Medical sciences</subject><subject>Medical statistics</subject><subject>Sample Size</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMGO0zAQhiMEWsrCIyDlgNDuIWXGjmOni5CWwJawhR66EqhCGjmOIwJJU-JUsDw9CQm9wIGTR55_Pv36PO8lwhwB2LOzTZqk5wixDIAJdYZxrEByOEe5wPA5RlwsFpfpq2CTvlMKX_A5zJP1BQuu73iz49ldbwZMyiCSKO57D5z7AoAomDzxTuIojhkXM-9io-t9ZX1X_rS-0ZU5VLorm53zi6b197psbe73U6078_n3mJc7Xfm57vRD716hK2cfTe-pd3P1-iZ5E6zWyzS5XAUmDBEDXUCBGVOKSaYKUJZLBrGJokzEWa4t55nRoZWRKiLDc8ZCQCkyJgBZYXJ-6j0dsfu2-XawrqO6dMZWld7Z5uBIAUSCI_bB7Rg0beNcawvat2Wt21tCoEEs0SCWBkM0GKI_YgklYUiDWKJeLI1iiRNQsiZG1z388dTikNU2P6Ink_3-ybTXrvdYtHpnSneMMc4jYKqPfRpj38vK3v5V8D_6_bPe9NPjgxFfus7-OOJ1-5UiyaWgD--XtArfbq-WW6SP_Be-K6-m</recordid><startdate>19980730</startdate><enddate>19980730</enddate><creator>Julious, S. A.</creator><creator>Campbell, M. J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980730</creationdate><title>Sample size calculations for paired or matched ordinal data</title><author>Julious, S. A. ; Campbell, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4411-af0f1b2882728f08e37209c66b59bdae33bca4e768f6c3d2240175b25012fcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Biological and medical sciences</topic><topic>Clinical Trials as Topic - statistics &amp; numerical data</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Cross-Over Studies</topic><topic>Data Collection - statistics &amp; numerical data</topic><topic>Data Interpretation, Statistical</topic><topic>Humans</topic><topic>Matched-Pair Analysis</topic><topic>Mathematical Computing</topic><topic>Medical sciences</topic><topic>Medical statistics</topic><topic>Sample Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Julious, S. A.</creatorcontrib><creatorcontrib>Campbell, M. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Julious, S. A.</au><au>Campbell, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sample size calculations for paired or matched ordinal data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>1998-07-30</date><risdate>1998</risdate><volume>17</volume><issue>14</issue><spage>1635</spage><epage>1642</epage><pages>1635-1642</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>The problem of calculating the number of subjects in a paired or matched study in which the outcome variable is ordinal is discussed. A common approach in the case of a two category variable is to calculate the required number of discordant pairs, and then divide this by the expected proportion of discordant pairs to obtain the total sample size. An approximate solution for the number of discordant pairs is proposed for ordinal data and compared to sample sizes estimated through simulation. It is shown that the sample sizes are underestimated when the number of categories is two, but that the approximation improves as the number of categories increases. Comparison of the required discordant sample size when there are two categories with the required sample size for more than two categories would suggest that the loss of power is not great if a categorical variable is collapsed into only two categories. However, the total sample size required is likely to be greater with only two categories, since the expected proportion of discordant to concordant pairs increases. Since the expected number of discordant pairs is likely to decrease as the number of categories increases, this suggests that as a rule of thumb the required discordant sample size for the two category case be used as an approximation to the total required sample size when the number of categories is greater than two. © 1998 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>9699235</pmid><doi>10.1002/(SICI)1097-0258(19980730)17:14&lt;1635::AID-SIM881&gt;3.0.CO;2-K</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 1998-07, Vol.17 (14), p.1635-1642
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_80065311
source MEDLINE; Access via Wiley Online Library
subjects Biological and medical sciences
Clinical Trials as Topic - statistics & numerical data
Computerized, statistical medical data processing and models in biomedicine
Cross-Over Studies
Data Collection - statistics & numerical data
Data Interpretation, Statistical
Humans
Matched-Pair Analysis
Mathematical Computing
Medical sciences
Medical statistics
Sample Size
title Sample size calculations for paired or matched ordinal data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A22%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sample%20size%20calculations%20for%20paired%20or%20matched%20ordinal%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Julious,%20S.%20A.&rft.date=1998-07-30&rft.volume=17&rft.issue=14&rft.spage=1635&rft.epage=1642&rft.pages=1635-1642&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/(SICI)1097-0258(19980730)17:14%3C1635::AID-SIM881%3E3.0.CO;2-K&rft_dat=%3Cproquest_cross%3E80065311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80065311&rft_id=info:pmid/9699235&rfr_iscdi=true