Expirograms of O2, CO2 and intravenously infused C2H2 and Freon-22 during panting in dogs

To study pulmonary gas transport in panting, expirograms of several inert and respiratory gases were simultaneously measured in panting dogs. The experiments were performed on 5 conscious dogs (mean body weight 34.4 kg) provided with a chronic tracheostomy. Panting at a mean frequency of 312/min (5....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respiration physiology 1990-05, Vol.80 (2-3), p.171-180
Hauptverfasser: SIPINKOVA, I, HAHN, G, HILLEBRECHT, A, MEYER, M, PIIPER, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 2-3
container_start_page 171
container_title Respiration physiology
container_volume 80
creator SIPINKOVA, I
HAHN, G
HILLEBRECHT, A
MEYER, M
PIIPER, J
description To study pulmonary gas transport in panting, expirograms of several inert and respiratory gases were simultaneously measured in panting dogs. The experiments were performed on 5 conscious dogs (mean body weight 34.4 kg) provided with a chronic tracheostomy. Panting at a mean frequency of 312/min (5.2 Hz) was induced by elevated room temperature (mean 28.1 degrees C). Isotonic saline equilibrated with 50% acetylene and 50% Freon-22 was infused intravenously at a constant rate (4 ml/min). Fractional concentrations in the tracheostomy tube were measured by a respiratory mass spectrometer, using a special sampling system designed for quasi-continuous analysis of rapidly changing gas concentrations. Air flow was monitored by an ultrasonic transit-time flowmeter. A tracing of expired gas concentrations versus expired volume showed no alveolar plateau, displaying a steep increase of Freon-22, acetylene and CO2 (decrease of O2) up to the onset of inspiration. The small but statistically highly significant differences between the expirograms of CO2 and O2, and of Freon-22 and acetylene, could be qualitatively explained by ventilation-perfusion inequalities with sequential emptying, by Taylor dispersion and by reversible solution in airway mucosa in the course of the respiratory cycle.
doi_str_mv 10.1016/0034-5687(90)90081-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80056618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80056618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-993d5d3c4b9177e387ff36c1d64e7fbd6c5cea93b6057ccc207c96ec98ac4733</originalsourceid><addsrcrecordid>eNpFkF9LwzAUxfOgzDn9Bgp5URSs5k-bNI9SNicM9rIXn0KapKPSpjVpxX17W1fm0-Xcc8_h8gPgBqNnjDB7QYjGUcJS_iDQo0AoxZE4A_PT-gJchvCJBs0Qm4EZwQTxBM_Bx_KnLX2z96oOsCngljzBbEugcgaWrvPq27qmD9VhUEUfrIEZWR_tlbeNiwiBpvel28NWuW6cpYOm2YcrcF6oKtjraS7AbrXcZetos317z143kSYx7yIhqEkM1XEuMOeWprwoKNPYsNjyIjdMJ9oqQXOGEq61Hv7WglktUqVjTukC3B9rW9989TZ0si6DtlWlnB0elylCCWM4HQ7j46H2TQjeFrL1Za38QWIkR4hypCVHWlIg-QdRiiF2O_X3eW3NKTQRHPy7yVdBq6rwyuky_HcLmsYJ4_QXoCx6ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80056618</pqid></control><display><type>article</type><title>Expirograms of O2, CO2 and intravenously infused C2H2 and Freon-22 during panting in dogs</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>SIPINKOVA, I ; HAHN, G ; HILLEBRECHT, A ; MEYER, M ; PIIPER, J</creator><creatorcontrib>SIPINKOVA, I ; HAHN, G ; HILLEBRECHT, A ; MEYER, M ; PIIPER, J</creatorcontrib><description>To study pulmonary gas transport in panting, expirograms of several inert and respiratory gases were simultaneously measured in panting dogs. The experiments were performed on 5 conscious dogs (mean body weight 34.4 kg) provided with a chronic tracheostomy. Panting at a mean frequency of 312/min (5.2 Hz) was induced by elevated room temperature (mean 28.1 degrees C). Isotonic saline equilibrated with 50% acetylene and 50% Freon-22 was infused intravenously at a constant rate (4 ml/min). Fractional concentrations in the tracheostomy tube were measured by a respiratory mass spectrometer, using a special sampling system designed for quasi-continuous analysis of rapidly changing gas concentrations. Air flow was monitored by an ultrasonic transit-time flowmeter. A tracing of expired gas concentrations versus expired volume showed no alveolar plateau, displaying a steep increase of Freon-22, acetylene and CO2 (decrease of O2) up to the onset of inspiration. The small but statistically highly significant differences between the expirograms of CO2 and O2, and of Freon-22 and acetylene, could be qualitatively explained by ventilation-perfusion inequalities with sequential emptying, by Taylor dispersion and by reversible solution in airway mucosa in the course of the respiratory cycle.</description><identifier>ISSN: 0034-5687</identifier><identifier>DOI: 10.1016/0034-5687(90)90081-9</identifier><identifier>PMID: 2120751</identifier><identifier>CODEN: RSPYAK</identifier><language>eng</language><publisher>Shannon: Elsevier</publisher><subject>Acetylene - administration &amp; dosage ; Acetylene - metabolism ; Air breathing ; Animals ; Biological and medical sciences ; Carbon Dioxide - metabolism ; Chlorofluorocarbons, Methane - administration &amp; dosage ; Diffusion ; Dogs ; Female ; Fundamental and applied biological sciences. Psychology ; Infusions, Intravenous ; Lung - metabolism ; Lung - physiology ; Lung Volume Measurements - methods ; Male ; Oxygen - metabolism ; Respiration - physiology ; Respiratory Function Tests ; Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics ; Temperature ; Vertebrates: respiratory system</subject><ispartof>Respiration physiology, 1990-05, Vol.80 (2-3), p.171-180</ispartof><rights>1991 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-993d5d3c4b9177e387ff36c1d64e7fbd6c5cea93b6057ccc207c96ec98ac4733</citedby><cites>FETCH-LOGICAL-c247t-993d5d3c4b9177e387ff36c1d64e7fbd6c5cea93b6057ccc207c96ec98ac4733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19384567$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2120751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SIPINKOVA, I</creatorcontrib><creatorcontrib>HAHN, G</creatorcontrib><creatorcontrib>HILLEBRECHT, A</creatorcontrib><creatorcontrib>MEYER, M</creatorcontrib><creatorcontrib>PIIPER, J</creatorcontrib><title>Expirograms of O2, CO2 and intravenously infused C2H2 and Freon-22 during panting in dogs</title><title>Respiration physiology</title><addtitle>Respir Physiol</addtitle><description>To study pulmonary gas transport in panting, expirograms of several inert and respiratory gases were simultaneously measured in panting dogs. The experiments were performed on 5 conscious dogs (mean body weight 34.4 kg) provided with a chronic tracheostomy. Panting at a mean frequency of 312/min (5.2 Hz) was induced by elevated room temperature (mean 28.1 degrees C). Isotonic saline equilibrated with 50% acetylene and 50% Freon-22 was infused intravenously at a constant rate (4 ml/min). Fractional concentrations in the tracheostomy tube were measured by a respiratory mass spectrometer, using a special sampling system designed for quasi-continuous analysis of rapidly changing gas concentrations. Air flow was monitored by an ultrasonic transit-time flowmeter. A tracing of expired gas concentrations versus expired volume showed no alveolar plateau, displaying a steep increase of Freon-22, acetylene and CO2 (decrease of O2) up to the onset of inspiration. The small but statistically highly significant differences between the expirograms of CO2 and O2, and of Freon-22 and acetylene, could be qualitatively explained by ventilation-perfusion inequalities with sequential emptying, by Taylor dispersion and by reversible solution in airway mucosa in the course of the respiratory cycle.</description><subject>Acetylene - administration &amp; dosage</subject><subject>Acetylene - metabolism</subject><subject>Air breathing</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Carbon Dioxide - metabolism</subject><subject>Chlorofluorocarbons, Methane - administration &amp; dosage</subject><subject>Diffusion</subject><subject>Dogs</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Infusions, Intravenous</subject><subject>Lung - metabolism</subject><subject>Lung - physiology</subject><subject>Lung Volume Measurements - methods</subject><subject>Male</subject><subject>Oxygen - metabolism</subject><subject>Respiration - physiology</subject><subject>Respiratory Function Tests</subject><subject>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</subject><subject>Temperature</subject><subject>Vertebrates: respiratory system</subject><issn>0034-5687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkF9LwzAUxfOgzDn9Bgp5URSs5k-bNI9SNicM9rIXn0KapKPSpjVpxX17W1fm0-Xcc8_h8gPgBqNnjDB7QYjGUcJS_iDQo0AoxZE4A_PT-gJchvCJBs0Qm4EZwQTxBM_Bx_KnLX2z96oOsCngljzBbEugcgaWrvPq27qmD9VhUEUfrIEZWR_tlbeNiwiBpvel28NWuW6cpYOm2YcrcF6oKtjraS7AbrXcZetos317z143kSYx7yIhqEkM1XEuMOeWprwoKNPYsNjyIjdMJ9oqQXOGEq61Hv7WglktUqVjTukC3B9rW9989TZ0si6DtlWlnB0elylCCWM4HQ7j46H2TQjeFrL1Za38QWIkR4hypCVHWlIg-QdRiiF2O_X3eW3NKTQRHPy7yVdBq6rwyuky_HcLmsYJ4_QXoCx6ZA</recordid><startdate>199005</startdate><enddate>199005</enddate><creator>SIPINKOVA, I</creator><creator>HAHN, G</creator><creator>HILLEBRECHT, A</creator><creator>MEYER, M</creator><creator>PIIPER, J</creator><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199005</creationdate><title>Expirograms of O2, CO2 and intravenously infused C2H2 and Freon-22 during panting in dogs</title><author>SIPINKOVA, I ; HAHN, G ; HILLEBRECHT, A ; MEYER, M ; PIIPER, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-993d5d3c4b9177e387ff36c1d64e7fbd6c5cea93b6057ccc207c96ec98ac4733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Acetylene - administration &amp; dosage</topic><topic>Acetylene - metabolism</topic><topic>Air breathing</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Carbon Dioxide - metabolism</topic><topic>Chlorofluorocarbons, Methane - administration &amp; dosage</topic><topic>Diffusion</topic><topic>Dogs</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Infusions, Intravenous</topic><topic>Lung - metabolism</topic><topic>Lung - physiology</topic><topic>Lung Volume Measurements - methods</topic><topic>Male</topic><topic>Oxygen - metabolism</topic><topic>Respiration - physiology</topic><topic>Respiratory Function Tests</topic><topic>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</topic><topic>Temperature</topic><topic>Vertebrates: respiratory system</topic><toplevel>online_resources</toplevel><creatorcontrib>SIPINKOVA, I</creatorcontrib><creatorcontrib>HAHN, G</creatorcontrib><creatorcontrib>HILLEBRECHT, A</creatorcontrib><creatorcontrib>MEYER, M</creatorcontrib><creatorcontrib>PIIPER, J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Respiration physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SIPINKOVA, I</au><au>HAHN, G</au><au>HILLEBRECHT, A</au><au>MEYER, M</au><au>PIIPER, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expirograms of O2, CO2 and intravenously infused C2H2 and Freon-22 during panting in dogs</atitle><jtitle>Respiration physiology</jtitle><addtitle>Respir Physiol</addtitle><date>1990-05</date><risdate>1990</risdate><volume>80</volume><issue>2-3</issue><spage>171</spage><epage>180</epage><pages>171-180</pages><issn>0034-5687</issn><coden>RSPYAK</coden><abstract>To study pulmonary gas transport in panting, expirograms of several inert and respiratory gases were simultaneously measured in panting dogs. The experiments were performed on 5 conscious dogs (mean body weight 34.4 kg) provided with a chronic tracheostomy. Panting at a mean frequency of 312/min (5.2 Hz) was induced by elevated room temperature (mean 28.1 degrees C). Isotonic saline equilibrated with 50% acetylene and 50% Freon-22 was infused intravenously at a constant rate (4 ml/min). Fractional concentrations in the tracheostomy tube were measured by a respiratory mass spectrometer, using a special sampling system designed for quasi-continuous analysis of rapidly changing gas concentrations. Air flow was monitored by an ultrasonic transit-time flowmeter. A tracing of expired gas concentrations versus expired volume showed no alveolar plateau, displaying a steep increase of Freon-22, acetylene and CO2 (decrease of O2) up to the onset of inspiration. The small but statistically highly significant differences between the expirograms of CO2 and O2, and of Freon-22 and acetylene, could be qualitatively explained by ventilation-perfusion inequalities with sequential emptying, by Taylor dispersion and by reversible solution in airway mucosa in the course of the respiratory cycle.</abstract><cop>Shannon</cop><cop>Amsterdam</cop><pub>Elsevier</pub><pmid>2120751</pmid><doi>10.1016/0034-5687(90)90081-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-5687
ispartof Respiration physiology, 1990-05, Vol.80 (2-3), p.171-180
issn 0034-5687
language eng
recordid cdi_proquest_miscellaneous_80056618
source MEDLINE; Alma/SFX Local Collection
subjects Acetylene - administration & dosage
Acetylene - metabolism
Air breathing
Animals
Biological and medical sciences
Carbon Dioxide - metabolism
Chlorofluorocarbons, Methane - administration & dosage
Diffusion
Dogs
Female
Fundamental and applied biological sciences. Psychology
Infusions, Intravenous
Lung - metabolism
Lung - physiology
Lung Volume Measurements - methods
Male
Oxygen - metabolism
Respiration - physiology
Respiratory Function Tests
Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics
Temperature
Vertebrates: respiratory system
title Expirograms of O2, CO2 and intravenously infused C2H2 and Freon-22 during panting in dogs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expirograms%20of%20O2,%20CO2%20and%20intravenously%20infused%20C2H2%20and%20Freon-22%20during%20panting%20in%20dogs&rft.jtitle=Respiration%20physiology&rft.au=SIPINKOVA,%20I&rft.date=1990-05&rft.volume=80&rft.issue=2-3&rft.spage=171&rft.epage=180&rft.pages=171-180&rft.issn=0034-5687&rft.coden=RSPYAK&rft_id=info:doi/10.1016/0034-5687(90)90081-9&rft_dat=%3Cproquest_cross%3E80056618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80056618&rft_id=info:pmid/2120751&rfr_iscdi=true