Understanding artificial neural networks and exploring their potential applications for the practicing urologist
Artificial neural networks (ANNs) are complex mathematical models that are distantly based on the human neuronal structure. They are capable of modeling elaborate biologic systems without making assumptions based on statistical distributions. Preliminary work has been reported on their application i...
Gespeichert in:
Veröffentlicht in: | Urology 1998-08, Vol.52 (2), p.161-172 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 2 |
container_start_page | 161 |
container_title | Urology |
container_volume | 52 |
creator | Wei, John T Zhang, Zhen Barnhill, Stephen D Madyastha, K.Rama Zhang, Hong Oesterling, Joseph E |
description | Artificial neural networks (ANNs) are complex mathematical models that are distantly based on the human neuronal structure. They are capable of modeling elaborate biologic systems without making assumptions based on statistical distributions. Preliminary work has been reported on their application in urology. The initial results have been promising, particularly as an additional tool in the detection of early prostate cancer using the ProstAsure Index, which has been the most extensively studied urologic ANN to date. We review the basic concepts behind ANNs and examine currently existing and potential future applications of this new dynamic technology both in urology and in general clinical medicine. |
doi_str_mv | 10.1016/S0090-4295(98)00181-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80055337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0090429598001812</els_id><sourcerecordid>80055337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-49a742c0257e7b2f3dfd4a160569cb58aff16ae2f4464c9a8e39e34023e265ed3</originalsourceid><addsrcrecordid>eNqF0D1vFDEQBmALEYUj8BMibYEQFAv-XrtCUcSXFIkipLZ83nEw7NmL7YXw7-O9O12LmynmmfHoReiS4HcEE_n-FmONe061eKPVW4yJIj19gjZE0KHXWounaHMiz9DzUn5ijKWUwzk611IP7W3QfBdHyKXaOIZ439lcgw8u2KmLsOR9qX9T_lW6Jjp4mKeUV1h_QMjdnCrEumo7z1NwtoYUS-dTXkE3Z-tq29b8ktOU7kOpL9CZt1OBl8d6ge4-ffx-_aW_-fb56_XVTe-Y0rXn2g6cOkzFAMOWejb6kVsisZDabYWy3hNpgXrOJXfaKmAaGMeUAZUCRnaBXh_2zjn9XqBUswvFwTTZCGkpRmEsBGNDg-IAXU6lZPBmzmFn8z9DsFmTNvukzRqj0crskza0zV0eP1i2OxhPU8doW__VsW-Ls5PPNrpQTowyzhVVjX04MGhh_AmQTXEBooMxZHDVjCn855BH5mCdbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80055337</pqid></control><display><type>article</type><title>Understanding artificial neural networks and exploring their potential applications for the practicing urologist</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Wei, John T ; Zhang, Zhen ; Barnhill, Stephen D ; Madyastha, K.Rama ; Zhang, Hong ; Oesterling, Joseph E</creator><creatorcontrib>Wei, John T ; Zhang, Zhen ; Barnhill, Stephen D ; Madyastha, K.Rama ; Zhang, Hong ; Oesterling, Joseph E</creatorcontrib><description>Artificial neural networks (ANNs) are complex mathematical models that are distantly based on the human neuronal structure. They are capable of modeling elaborate biologic systems without making assumptions based on statistical distributions. Preliminary work has been reported on their application in urology. The initial results have been promising, particularly as an additional tool in the detection of early prostate cancer using the ProstAsure Index, which has been the most extensively studied urologic ANN to date. We review the basic concepts behind ANNs and examine currently existing and potential future applications of this new dynamic technology both in urology and in general clinical medicine.</description><identifier>ISSN: 0090-4295</identifier><identifier>EISSN: 1527-9995</identifier><identifier>DOI: 10.1016/S0090-4295(98)00181-2</identifier><identifier>PMID: 9697777</identifier><identifier>CODEN: URGYAZ</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Biological and medical sciences ; Clinical Medicine ; Computerized, statistical medical data processing and models in biomedicine ; Forecasting ; Humans ; Learning ; Medical sciences ; Models and simulation ; Models, Statistical ; Nephrology. Urinary tract diseases ; Neural Networks (Computer) ; Tumors of the urinary system ; Urinary tract. Prostate gland ; Urology - methods</subject><ispartof>Urology, 1998-08, Vol.52 (2), p.161-172</ispartof><rights>1998 Elsevier Science Inc.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-49a742c0257e7b2f3dfd4a160569cb58aff16ae2f4464c9a8e39e34023e265ed3</citedby><cites>FETCH-LOGICAL-c389t-49a742c0257e7b2f3dfd4a160569cb58aff16ae2f4464c9a8e39e34023e265ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0090-4295(98)00181-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,780,784,792,3548,27920,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2344828$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9697777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, John T</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Barnhill, Stephen D</creatorcontrib><creatorcontrib>Madyastha, K.Rama</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Oesterling, Joseph E</creatorcontrib><title>Understanding artificial neural networks and exploring their potential applications for the practicing urologist</title><title>Urology</title><addtitle>Urology</addtitle><description>Artificial neural networks (ANNs) are complex mathematical models that are distantly based on the human neuronal structure. They are capable of modeling elaborate biologic systems without making assumptions based on statistical distributions. Preliminary work has been reported on their application in urology. The initial results have been promising, particularly as an additional tool in the detection of early prostate cancer using the ProstAsure Index, which has been the most extensively studied urologic ANN to date. We review the basic concepts behind ANNs and examine currently existing and potential future applications of this new dynamic technology both in urology and in general clinical medicine.</description><subject>Biological and medical sciences</subject><subject>Clinical Medicine</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Forecasting</subject><subject>Humans</subject><subject>Learning</subject><subject>Medical sciences</subject><subject>Models and simulation</subject><subject>Models, Statistical</subject><subject>Nephrology. Urinary tract diseases</subject><subject>Neural Networks (Computer)</subject><subject>Tumors of the urinary system</subject><subject>Urinary tract. Prostate gland</subject><subject>Urology - methods</subject><issn>0090-4295</issn><issn>1527-9995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0D1vFDEQBmALEYUj8BMibYEQFAv-XrtCUcSXFIkipLZ83nEw7NmL7YXw7-O9O12LmynmmfHoReiS4HcEE_n-FmONe061eKPVW4yJIj19gjZE0KHXWounaHMiz9DzUn5ijKWUwzk611IP7W3QfBdHyKXaOIZ439lcgw8u2KmLsOR9qX9T_lW6Jjp4mKeUV1h_QMjdnCrEumo7z1NwtoYUS-dTXkE3Z-tq29b8ktOU7kOpL9CZt1OBl8d6ge4-ffx-_aW_-fb56_XVTe-Y0rXn2g6cOkzFAMOWejb6kVsisZDabYWy3hNpgXrOJXfaKmAaGMeUAZUCRnaBXh_2zjn9XqBUswvFwTTZCGkpRmEsBGNDg-IAXU6lZPBmzmFn8z9DsFmTNvukzRqj0crskza0zV0eP1i2OxhPU8doW__VsW-Ls5PPNrpQTowyzhVVjX04MGhh_AmQTXEBooMxZHDVjCn855BH5mCdbg</recordid><startdate>19980801</startdate><enddate>19980801</enddate><creator>Wei, John T</creator><creator>Zhang, Zhen</creator><creator>Barnhill, Stephen D</creator><creator>Madyastha, K.Rama</creator><creator>Zhang, Hong</creator><creator>Oesterling, Joseph E</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980801</creationdate><title>Understanding artificial neural networks and exploring their potential applications for the practicing urologist</title><author>Wei, John T ; Zhang, Zhen ; Barnhill, Stephen D ; Madyastha, K.Rama ; Zhang, Hong ; Oesterling, Joseph E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-49a742c0257e7b2f3dfd4a160569cb58aff16ae2f4464c9a8e39e34023e265ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Biological and medical sciences</topic><topic>Clinical Medicine</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Forecasting</topic><topic>Humans</topic><topic>Learning</topic><topic>Medical sciences</topic><topic>Models and simulation</topic><topic>Models, Statistical</topic><topic>Nephrology. Urinary tract diseases</topic><topic>Neural Networks (Computer)</topic><topic>Tumors of the urinary system</topic><topic>Urinary tract. Prostate gland</topic><topic>Urology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, John T</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Barnhill, Stephen D</creatorcontrib><creatorcontrib>Madyastha, K.Rama</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Oesterling, Joseph E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Urology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, John T</au><au>Zhang, Zhen</au><au>Barnhill, Stephen D</au><au>Madyastha, K.Rama</au><au>Zhang, Hong</au><au>Oesterling, Joseph E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding artificial neural networks and exploring their potential applications for the practicing urologist</atitle><jtitle>Urology</jtitle><addtitle>Urology</addtitle><date>1998-08-01</date><risdate>1998</risdate><volume>52</volume><issue>2</issue><spage>161</spage><epage>172</epage><pages>161-172</pages><issn>0090-4295</issn><eissn>1527-9995</eissn><coden>URGYAZ</coden><abstract>Artificial neural networks (ANNs) are complex mathematical models that are distantly based on the human neuronal structure. They are capable of modeling elaborate biologic systems without making assumptions based on statistical distributions. Preliminary work has been reported on their application in urology. The initial results have been promising, particularly as an additional tool in the detection of early prostate cancer using the ProstAsure Index, which has been the most extensively studied urologic ANN to date. We review the basic concepts behind ANNs and examine currently existing and potential future applications of this new dynamic technology both in urology and in general clinical medicine.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>9697777</pmid><doi>10.1016/S0090-4295(98)00181-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-4295 |
ispartof | Urology, 1998-08, Vol.52 (2), p.161-172 |
issn | 0090-4295 1527-9995 |
language | eng |
recordid | cdi_proquest_miscellaneous_80055337 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Biological and medical sciences Clinical Medicine Computerized, statistical medical data processing and models in biomedicine Forecasting Humans Learning Medical sciences Models and simulation Models, Statistical Nephrology. Urinary tract diseases Neural Networks (Computer) Tumors of the urinary system Urinary tract. Prostate gland Urology - methods |
title | Understanding artificial neural networks and exploring their potential applications for the practicing urologist |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20artificial%20neural%20networks%20and%20exploring%20their%20potential%20applications%20for%20the%20practicing%20urologist&rft.jtitle=Urology&rft.au=Wei,%20John%20T&rft.date=1998-08-01&rft.volume=52&rft.issue=2&rft.spage=161&rft.epage=172&rft.pages=161-172&rft.issn=0090-4295&rft.eissn=1527-9995&rft.coden=URGYAZ&rft_id=info:doi/10.1016/S0090-4295(98)00181-2&rft_dat=%3Cproquest_cross%3E80055337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80055337&rft_id=info:pmid/9697777&rft_els_id=S0090429598001812&rfr_iscdi=true |