Understanding artificial neural networks and exploring their potential applications for the practicing urologist

Artificial neural networks (ANNs) are complex mathematical models that are distantly based on the human neuronal structure. They are capable of modeling elaborate biologic systems without making assumptions based on statistical distributions. Preliminary work has been reported on their application i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Urology 1998-08, Vol.52 (2), p.161-172
Hauptverfasser: Wei, John T, Zhang, Zhen, Barnhill, Stephen D, Madyastha, K.Rama, Zhang, Hong, Oesterling, Joseph E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 2
container_start_page 161
container_title Urology
container_volume 52
creator Wei, John T
Zhang, Zhen
Barnhill, Stephen D
Madyastha, K.Rama
Zhang, Hong
Oesterling, Joseph E
description Artificial neural networks (ANNs) are complex mathematical models that are distantly based on the human neuronal structure. They are capable of modeling elaborate biologic systems without making assumptions based on statistical distributions. Preliminary work has been reported on their application in urology. The initial results have been promising, particularly as an additional tool in the detection of early prostate cancer using the ProstAsure Index, which has been the most extensively studied urologic ANN to date. We review the basic concepts behind ANNs and examine currently existing and potential future applications of this new dynamic technology both in urology and in general clinical medicine.
doi_str_mv 10.1016/S0090-4295(98)00181-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80055337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0090429598001812</els_id><sourcerecordid>80055337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-49a742c0257e7b2f3dfd4a160569cb58aff16ae2f4464c9a8e39e34023e265ed3</originalsourceid><addsrcrecordid>eNqF0D1vFDEQBmALEYUj8BMibYEQFAv-XrtCUcSXFIkipLZ83nEw7NmL7YXw7-O9O12LmynmmfHoReiS4HcEE_n-FmONe061eKPVW4yJIj19gjZE0KHXWounaHMiz9DzUn5ijKWUwzk611IP7W3QfBdHyKXaOIZ439lcgw8u2KmLsOR9qX9T_lW6Jjp4mKeUV1h_QMjdnCrEumo7z1NwtoYUS-dTXkE3Z-tq29b8ktOU7kOpL9CZt1OBl8d6ge4-ffx-_aW_-fb56_XVTe-Y0rXn2g6cOkzFAMOWejb6kVsisZDabYWy3hNpgXrOJXfaKmAaGMeUAZUCRnaBXh_2zjn9XqBUswvFwTTZCGkpRmEsBGNDg-IAXU6lZPBmzmFn8z9DsFmTNvukzRqj0crskza0zV0eP1i2OxhPU8doW__VsW-Ls5PPNrpQTowyzhVVjX04MGhh_AmQTXEBooMxZHDVjCn855BH5mCdbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80055337</pqid></control><display><type>article</type><title>Understanding artificial neural networks and exploring their potential applications for the practicing urologist</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Wei, John T ; Zhang, Zhen ; Barnhill, Stephen D ; Madyastha, K.Rama ; Zhang, Hong ; Oesterling, Joseph E</creator><creatorcontrib>Wei, John T ; Zhang, Zhen ; Barnhill, Stephen D ; Madyastha, K.Rama ; Zhang, Hong ; Oesterling, Joseph E</creatorcontrib><description>Artificial neural networks (ANNs) are complex mathematical models that are distantly based on the human neuronal structure. They are capable of modeling elaborate biologic systems without making assumptions based on statistical distributions. Preliminary work has been reported on their application in urology. The initial results have been promising, particularly as an additional tool in the detection of early prostate cancer using the ProstAsure Index, which has been the most extensively studied urologic ANN to date. We review the basic concepts behind ANNs and examine currently existing and potential future applications of this new dynamic technology both in urology and in general clinical medicine.</description><identifier>ISSN: 0090-4295</identifier><identifier>EISSN: 1527-9995</identifier><identifier>DOI: 10.1016/S0090-4295(98)00181-2</identifier><identifier>PMID: 9697777</identifier><identifier>CODEN: URGYAZ</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Biological and medical sciences ; Clinical Medicine ; Computerized, statistical medical data processing and models in biomedicine ; Forecasting ; Humans ; Learning ; Medical sciences ; Models and simulation ; Models, Statistical ; Nephrology. Urinary tract diseases ; Neural Networks (Computer) ; Tumors of the urinary system ; Urinary tract. Prostate gland ; Urology - methods</subject><ispartof>Urology, 1998-08, Vol.52 (2), p.161-172</ispartof><rights>1998 Elsevier Science Inc.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-49a742c0257e7b2f3dfd4a160569cb58aff16ae2f4464c9a8e39e34023e265ed3</citedby><cites>FETCH-LOGICAL-c389t-49a742c0257e7b2f3dfd4a160569cb58aff16ae2f4464c9a8e39e34023e265ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0090-4295(98)00181-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,780,784,792,3548,27920,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2344828$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9697777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, John T</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Barnhill, Stephen D</creatorcontrib><creatorcontrib>Madyastha, K.Rama</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Oesterling, Joseph E</creatorcontrib><title>Understanding artificial neural networks and exploring their potential applications for the practicing urologist</title><title>Urology</title><addtitle>Urology</addtitle><description>Artificial neural networks (ANNs) are complex mathematical models that are distantly based on the human neuronal structure. They are capable of modeling elaborate biologic systems without making assumptions based on statistical distributions. Preliminary work has been reported on their application in urology. The initial results have been promising, particularly as an additional tool in the detection of early prostate cancer using the ProstAsure Index, which has been the most extensively studied urologic ANN to date. We review the basic concepts behind ANNs and examine currently existing and potential future applications of this new dynamic technology both in urology and in general clinical medicine.</description><subject>Biological and medical sciences</subject><subject>Clinical Medicine</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Forecasting</subject><subject>Humans</subject><subject>Learning</subject><subject>Medical sciences</subject><subject>Models and simulation</subject><subject>Models, Statistical</subject><subject>Nephrology. Urinary tract diseases</subject><subject>Neural Networks (Computer)</subject><subject>Tumors of the urinary system</subject><subject>Urinary tract. Prostate gland</subject><subject>Urology - methods</subject><issn>0090-4295</issn><issn>1527-9995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0D1vFDEQBmALEYUj8BMibYEQFAv-XrtCUcSXFIkipLZ83nEw7NmL7YXw7-O9O12LmynmmfHoReiS4HcEE_n-FmONe061eKPVW4yJIj19gjZE0KHXWounaHMiz9DzUn5ijKWUwzk611IP7W3QfBdHyKXaOIZ439lcgw8u2KmLsOR9qX9T_lW6Jjp4mKeUV1h_QMjdnCrEumo7z1NwtoYUS-dTXkE3Z-tq29b8ktOU7kOpL9CZt1OBl8d6ge4-ffx-_aW_-fb56_XVTe-Y0rXn2g6cOkzFAMOWejb6kVsisZDabYWy3hNpgXrOJXfaKmAaGMeUAZUCRnaBXh_2zjn9XqBUswvFwTTZCGkpRmEsBGNDg-IAXU6lZPBmzmFn8z9DsFmTNvukzRqj0crskza0zV0eP1i2OxhPU8doW__VsW-Ls5PPNrpQTowyzhVVjX04MGhh_AmQTXEBooMxZHDVjCn855BH5mCdbg</recordid><startdate>19980801</startdate><enddate>19980801</enddate><creator>Wei, John T</creator><creator>Zhang, Zhen</creator><creator>Barnhill, Stephen D</creator><creator>Madyastha, K.Rama</creator><creator>Zhang, Hong</creator><creator>Oesterling, Joseph E</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980801</creationdate><title>Understanding artificial neural networks and exploring their potential applications for the practicing urologist</title><author>Wei, John T ; Zhang, Zhen ; Barnhill, Stephen D ; Madyastha, K.Rama ; Zhang, Hong ; Oesterling, Joseph E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-49a742c0257e7b2f3dfd4a160569cb58aff16ae2f4464c9a8e39e34023e265ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Biological and medical sciences</topic><topic>Clinical Medicine</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Forecasting</topic><topic>Humans</topic><topic>Learning</topic><topic>Medical sciences</topic><topic>Models and simulation</topic><topic>Models, Statistical</topic><topic>Nephrology. Urinary tract diseases</topic><topic>Neural Networks (Computer)</topic><topic>Tumors of the urinary system</topic><topic>Urinary tract. Prostate gland</topic><topic>Urology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, John T</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Barnhill, Stephen D</creatorcontrib><creatorcontrib>Madyastha, K.Rama</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Oesterling, Joseph E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Urology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, John T</au><au>Zhang, Zhen</au><au>Barnhill, Stephen D</au><au>Madyastha, K.Rama</au><au>Zhang, Hong</au><au>Oesterling, Joseph E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding artificial neural networks and exploring their potential applications for the practicing urologist</atitle><jtitle>Urology</jtitle><addtitle>Urology</addtitle><date>1998-08-01</date><risdate>1998</risdate><volume>52</volume><issue>2</issue><spage>161</spage><epage>172</epage><pages>161-172</pages><issn>0090-4295</issn><eissn>1527-9995</eissn><coden>URGYAZ</coden><abstract>Artificial neural networks (ANNs) are complex mathematical models that are distantly based on the human neuronal structure. They are capable of modeling elaborate biologic systems without making assumptions based on statistical distributions. Preliminary work has been reported on their application in urology. The initial results have been promising, particularly as an additional tool in the detection of early prostate cancer using the ProstAsure Index, which has been the most extensively studied urologic ANN to date. We review the basic concepts behind ANNs and examine currently existing and potential future applications of this new dynamic technology both in urology and in general clinical medicine.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>9697777</pmid><doi>10.1016/S0090-4295(98)00181-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0090-4295
ispartof Urology, 1998-08, Vol.52 (2), p.161-172
issn 0090-4295
1527-9995
language eng
recordid cdi_proquest_miscellaneous_80055337
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Biological and medical sciences
Clinical Medicine
Computerized, statistical medical data processing and models in biomedicine
Forecasting
Humans
Learning
Medical sciences
Models and simulation
Models, Statistical
Nephrology. Urinary tract diseases
Neural Networks (Computer)
Tumors of the urinary system
Urinary tract. Prostate gland
Urology - methods
title Understanding artificial neural networks and exploring their potential applications for the practicing urologist
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20artificial%20neural%20networks%20and%20exploring%20their%20potential%20applications%20for%20the%20practicing%20urologist&rft.jtitle=Urology&rft.au=Wei,%20John%20T&rft.date=1998-08-01&rft.volume=52&rft.issue=2&rft.spage=161&rft.epage=172&rft.pages=161-172&rft.issn=0090-4295&rft.eissn=1527-9995&rft.coden=URGYAZ&rft_id=info:doi/10.1016/S0090-4295(98)00181-2&rft_dat=%3Cproquest_cross%3E80055337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80055337&rft_id=info:pmid/9697777&rft_els_id=S0090429598001812&rfr_iscdi=true