Design, Synthesis, and Pharmacological Evaluation of Conformationally Constrained Analogues of N,N‘-Diaryl- and N-Aryl-N-aralkylguanidines as Potent Inhibitors of Neuronal Na+ Channels
In the present investigation, the rationale for the design, synthesis, and biological evaluation of potent inhibitors of neuronal Na+ channels is described. N,N‘-Diaryl- and N-aryl-N-aralkylguanidine templates were locked in conformations mimicking the permissible conformations of the flexible diary...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 1998-07, Vol.41 (16), p.3048-3061 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3061 |
---|---|
container_issue | 16 |
container_start_page | 3048 |
container_title | Journal of medicinal chemistry |
container_volume | 41 |
creator | Maillard, Michel C Perlman, Michael E Amitay, Oved Baxter, Deborah Berlove, David Connaughton, Sonia Fischer, James B Guo, Jun Qing Hu, Lain-Yen McBurney, Robert N Nagy, Peter I Subbarao, Katragadda Yost, Elizabeth A Zhang, Lu Durant, Graham J |
description | In the present investigation, the rationale for the design, synthesis, and biological evaluation of potent inhibitors of neuronal Na+ channels is described. N,N‘-Diaryl- and N-aryl-N-aralkylguanidine templates were locked in conformations mimicking the permissible conformations of the flexible diarylguanidinium ion (AS+, AA+, SS+). The resulting set of constrained guanidines termed “lockamers” (cyclophane, quinazoline, aminopyrimidazolines, aminoimidazolines, azocino- and tetrahydroquinolinocarboximidamides) was examined for neuronal Na+ channel blockade properties. Inhibition of [14C]guanidinium ion influx in CHO cells expressing type IIA Na+ channels showed that the aminopyrimidazoline 9b and aminoimidazoline 9d, compounds proposed to lock the N,N‘-diarylguanidinium in an SS+ conformation, were the most potent Na+ channel blockers with IC50's of 0.06 μM, a value 17 times lower than that of the parent flexible compound 18d. The rest of the restricted analogues with 4-p-alkyl substituents retained potency with IC50 values ranging between 0.46 and 2.9 μM. Evaluation in a synaptosomal 45Ca2+ influx assay showed that 9b did not exhibit high selectivity for neuronal Na+ vs Ca2+ channels. The retention of significant neuronal Na+ blockade in all types of semirigid conformers gives evidence for a multiple mode of binding in this class of compounds and can possibly be attributed to a poor structural specificity of the site(s) of action. Compound 9b was also found to be the most active compound in vivo based on the high level of inhibition of seizures exhibited in the DBA/2 mouse model. The pK a value of 9b indicates that 9b binds to the channel in its protonated form, and log D vs pH measurements suggest that ion-pair partitioning contributes to membrane transport. This compound stands out as an interesting lead for further development of neurotherapeutic agents. |
doi_str_mv | 10.1021/jm980124a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80046385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80046385</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-73f2f9a87ebef0f4099a8dee97be707e9abd659e2e0ac55f34f797f1ab822fe23</originalsourceid><addsrcrecordid>eNptkc9uEzEQxlcIVELhwAMg-UCREFnwev949xilpRRVIaJBHK3Z3XHi1GsXexeRG4_Bs_A4fZJ6SZQTJ8_M9_Nnz0wUvUzo-4Sy5MO2q0qasAweRZMkZzTOSpo9jiaUMhazgqVPo2febymlacLSk-ikKsqcZfkk-nuOXq3NlNzsTL8JsZ8SMC1ZbsB10Fht16oBTS5-gh6gV9YQK8ncGmmDPuag9W4s-N6BMtiSWSjZ9YB-JBfTxf3vP_G5ArfT8T_rRTwb40UMDvTtTq8HMKoNVz0BT5a2R9OTK7NRteqt27vg4MaXyALekfkGjEHtn0dPJGiPLw7nafTt48Vq_im-_nJ5NZ9dx5Dyqo95KpmsoORYo6Qyo1VIWsSK18gpxwrqtsgrZEihyXOZZpJXXCZQl4xJZOlp9Gbve-fsj9BWLzrlG9QaDNrBi5LSrEjLPIBv92DjrPcOpbhzqguNi4SKcU_iuKfAvjqYDnWH7ZE8LCborw86-DB_6cA0yh8xlhZhmTxg8R5TvsdfRxncrSh4ynOxWt4Idrn6_J3Nv4oy8Gd7HhovtnZwYaj-P997AFvLucI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80046385</pqid></control><display><type>article</type><title>Design, Synthesis, and Pharmacological Evaluation of Conformationally Constrained Analogues of N,N‘-Diaryl- and N-Aryl-N-aralkylguanidines as Potent Inhibitors of Neuronal Na+ Channels</title><source>ACS Publications</source><source>MEDLINE</source><creator>Maillard, Michel C ; Perlman, Michael E ; Amitay, Oved ; Baxter, Deborah ; Berlove, David ; Connaughton, Sonia ; Fischer, James B ; Guo, Jun Qing ; Hu, Lain-Yen ; McBurney, Robert N ; Nagy, Peter I ; Subbarao, Katragadda ; Yost, Elizabeth A ; Zhang, Lu ; Durant, Graham J</creator><creatorcontrib>Maillard, Michel C ; Perlman, Michael E ; Amitay, Oved ; Baxter, Deborah ; Berlove, David ; Connaughton, Sonia ; Fischer, James B ; Guo, Jun Qing ; Hu, Lain-Yen ; McBurney, Robert N ; Nagy, Peter I ; Subbarao, Katragadda ; Yost, Elizabeth A ; Zhang, Lu ; Durant, Graham J</creatorcontrib><description>In the present investigation, the rationale for the design, synthesis, and biological evaluation of potent inhibitors of neuronal Na+ channels is described. N,N‘-Diaryl- and N-aryl-N-aralkylguanidine templates were locked in conformations mimicking the permissible conformations of the flexible diarylguanidinium ion (AS+, AA+, SS+). The resulting set of constrained guanidines termed “lockamers” (cyclophane, quinazoline, aminopyrimidazolines, aminoimidazolines, azocino- and tetrahydroquinolinocarboximidamides) was examined for neuronal Na+ channel blockade properties. Inhibition of [14C]guanidinium ion influx in CHO cells expressing type IIA Na+ channels showed that the aminopyrimidazoline 9b and aminoimidazoline 9d, compounds proposed to lock the N,N‘-diarylguanidinium in an SS+ conformation, were the most potent Na+ channel blockers with IC50's of 0.06 μM, a value 17 times lower than that of the parent flexible compound 18d. The rest of the restricted analogues with 4-p-alkyl substituents retained potency with IC50 values ranging between 0.46 and 2.9 μM. Evaluation in a synaptosomal 45Ca2+ influx assay showed that 9b did not exhibit high selectivity for neuronal Na+ vs Ca2+ channels. The retention of significant neuronal Na+ blockade in all types of semirigid conformers gives evidence for a multiple mode of binding in this class of compounds and can possibly be attributed to a poor structural specificity of the site(s) of action. Compound 9b was also found to be the most active compound in vivo based on the high level of inhibition of seizures exhibited in the DBA/2 mouse model. The pK a value of 9b indicates that 9b binds to the channel in its protonated form, and log D vs pH measurements suggest that ion-pair partitioning contributes to membrane transport. This compound stands out as an interesting lead for further development of neurotherapeutic agents.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/jm980124a</identifier><identifier>PMID: 9685245</identifier><identifier>CODEN: JMCMAR</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Animals ; Anticonvulsants - chemical synthesis ; Anticonvulsants - chemistry ; Anticonvulsants - metabolism ; Anticonvulsants - pharmacology ; Anticonvulsants. Antiepileptics. Antiparkinson agents ; Biological and medical sciences ; Biological Transport ; Brain - drug effects ; Brain - metabolism ; Brain - ultrastructure ; Calcium - metabolism ; Calcium Channel Blockers - chemical synthesis ; Calcium Channel Blockers - chemistry ; Calcium Channel Blockers - metabolism ; Calcium Channel Blockers - pharmacology ; Calcium Channels - drug effects ; CHO Cells ; Cricetinae ; Drug Design ; Female ; Guanidine - metabolism ; Imidazoles - chemical synthesis ; Imidazoles - chemistry ; Imidazoles - metabolism ; Imidazoles - pharmacology ; Male ; Medical sciences ; Mice ; Mice, Inbred DBA ; Molecular Conformation ; Neurons - drug effects ; Neurons - metabolism ; Neuropharmacology ; Pharmacology. Drug treatments ; Pyrimidines - chemical synthesis ; Pyrimidines - chemistry ; Pyrimidines - metabolism ; Pyrimidines - pharmacology ; Rats ; Receptors, N-Methyl-D-Aspartate - metabolism ; Seizures - prevention & control ; Sodium Channel Blockers ; Sodium Channels - biosynthesis ; Structure-Activity Relationship ; Synaptosomes - drug effects ; Synaptosomes - metabolism</subject><ispartof>Journal of medicinal chemistry, 1998-07, Vol.41 (16), p.3048-3061</ispartof><rights>Copyright © 1998 American Chemical Society</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-73f2f9a87ebef0f4099a8dee97be707e9abd659e2e0ac55f34f797f1ab822fe23</citedby><cites>FETCH-LOGICAL-a379t-73f2f9a87ebef0f4099a8dee97be707e9abd659e2e0ac55f34f797f1ab822fe23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jm980124a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jm980124a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2360007$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9685245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maillard, Michel C</creatorcontrib><creatorcontrib>Perlman, Michael E</creatorcontrib><creatorcontrib>Amitay, Oved</creatorcontrib><creatorcontrib>Baxter, Deborah</creatorcontrib><creatorcontrib>Berlove, David</creatorcontrib><creatorcontrib>Connaughton, Sonia</creatorcontrib><creatorcontrib>Fischer, James B</creatorcontrib><creatorcontrib>Guo, Jun Qing</creatorcontrib><creatorcontrib>Hu, Lain-Yen</creatorcontrib><creatorcontrib>McBurney, Robert N</creatorcontrib><creatorcontrib>Nagy, Peter I</creatorcontrib><creatorcontrib>Subbarao, Katragadda</creatorcontrib><creatorcontrib>Yost, Elizabeth A</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Durant, Graham J</creatorcontrib><title>Design, Synthesis, and Pharmacological Evaluation of Conformationally Constrained Analogues of N,N‘-Diaryl- and N-Aryl-N-aralkylguanidines as Potent Inhibitors of Neuronal Na+ Channels</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>In the present investigation, the rationale for the design, synthesis, and biological evaluation of potent inhibitors of neuronal Na+ channels is described. N,N‘-Diaryl- and N-aryl-N-aralkylguanidine templates were locked in conformations mimicking the permissible conformations of the flexible diarylguanidinium ion (AS+, AA+, SS+). The resulting set of constrained guanidines termed “lockamers” (cyclophane, quinazoline, aminopyrimidazolines, aminoimidazolines, azocino- and tetrahydroquinolinocarboximidamides) was examined for neuronal Na+ channel blockade properties. Inhibition of [14C]guanidinium ion influx in CHO cells expressing type IIA Na+ channels showed that the aminopyrimidazoline 9b and aminoimidazoline 9d, compounds proposed to lock the N,N‘-diarylguanidinium in an SS+ conformation, were the most potent Na+ channel blockers with IC50's of 0.06 μM, a value 17 times lower than that of the parent flexible compound 18d. The rest of the restricted analogues with 4-p-alkyl substituents retained potency with IC50 values ranging between 0.46 and 2.9 μM. Evaluation in a synaptosomal 45Ca2+ influx assay showed that 9b did not exhibit high selectivity for neuronal Na+ vs Ca2+ channels. The retention of significant neuronal Na+ blockade in all types of semirigid conformers gives evidence for a multiple mode of binding in this class of compounds and can possibly be attributed to a poor structural specificity of the site(s) of action. Compound 9b was also found to be the most active compound in vivo based on the high level of inhibition of seizures exhibited in the DBA/2 mouse model. The pK a value of 9b indicates that 9b binds to the channel in its protonated form, and log D vs pH measurements suggest that ion-pair partitioning contributes to membrane transport. This compound stands out as an interesting lead for further development of neurotherapeutic agents.</description><subject>Animals</subject><subject>Anticonvulsants - chemical synthesis</subject><subject>Anticonvulsants - chemistry</subject><subject>Anticonvulsants - metabolism</subject><subject>Anticonvulsants - pharmacology</subject><subject>Anticonvulsants. Antiepileptics. Antiparkinson agents</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - ultrastructure</subject><subject>Calcium - metabolism</subject><subject>Calcium Channel Blockers - chemical synthesis</subject><subject>Calcium Channel Blockers - chemistry</subject><subject>Calcium Channel Blockers - metabolism</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>Calcium Channels - drug effects</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Drug Design</subject><subject>Female</subject><subject>Guanidine - metabolism</subject><subject>Imidazoles - chemical synthesis</subject><subject>Imidazoles - chemistry</subject><subject>Imidazoles - metabolism</subject><subject>Imidazoles - pharmacology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred DBA</subject><subject>Molecular Conformation</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neuropharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>Pyrimidines - chemical synthesis</subject><subject>Pyrimidines - chemistry</subject><subject>Pyrimidines - metabolism</subject><subject>Pyrimidines - pharmacology</subject><subject>Rats</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Seizures - prevention & control</subject><subject>Sodium Channel Blockers</subject><subject>Sodium Channels - biosynthesis</subject><subject>Structure-Activity Relationship</subject><subject>Synaptosomes - drug effects</subject><subject>Synaptosomes - metabolism</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc9uEzEQxlcIVELhwAMg-UCREFnwev949xilpRRVIaJBHK3Z3XHi1GsXexeRG4_Bs_A4fZJ6SZQTJ8_M9_Nnz0wUvUzo-4Sy5MO2q0qasAweRZMkZzTOSpo9jiaUMhazgqVPo2febymlacLSk-ikKsqcZfkk-nuOXq3NlNzsTL8JsZ8SMC1ZbsB10Fht16oBTS5-gh6gV9YQK8ncGmmDPuag9W4s-N6BMtiSWSjZ9YB-JBfTxf3vP_G5ArfT8T_rRTwb40UMDvTtTq8HMKoNVz0BT5a2R9OTK7NRteqt27vg4MaXyALekfkGjEHtn0dPJGiPLw7nafTt48Vq_im-_nJ5NZ9dx5Dyqo95KpmsoORYo6Qyo1VIWsSK18gpxwrqtsgrZEihyXOZZpJXXCZQl4xJZOlp9Gbve-fsj9BWLzrlG9QaDNrBi5LSrEjLPIBv92DjrPcOpbhzqguNi4SKcU_iuKfAvjqYDnWH7ZE8LCborw86-DB_6cA0yh8xlhZhmTxg8R5TvsdfRxncrSh4ynOxWt4Idrn6_J3Nv4oy8Gd7HhovtnZwYaj-P997AFvLucI</recordid><startdate>19980730</startdate><enddate>19980730</enddate><creator>Maillard, Michel C</creator><creator>Perlman, Michael E</creator><creator>Amitay, Oved</creator><creator>Baxter, Deborah</creator><creator>Berlove, David</creator><creator>Connaughton, Sonia</creator><creator>Fischer, James B</creator><creator>Guo, Jun Qing</creator><creator>Hu, Lain-Yen</creator><creator>McBurney, Robert N</creator><creator>Nagy, Peter I</creator><creator>Subbarao, Katragadda</creator><creator>Yost, Elizabeth A</creator><creator>Zhang, Lu</creator><creator>Durant, Graham J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980730</creationdate><title>Design, Synthesis, and Pharmacological Evaluation of Conformationally Constrained Analogues of N,N‘-Diaryl- and N-Aryl-N-aralkylguanidines as Potent Inhibitors of Neuronal Na+ Channels</title><author>Maillard, Michel C ; Perlman, Michael E ; Amitay, Oved ; Baxter, Deborah ; Berlove, David ; Connaughton, Sonia ; Fischer, James B ; Guo, Jun Qing ; Hu, Lain-Yen ; McBurney, Robert N ; Nagy, Peter I ; Subbarao, Katragadda ; Yost, Elizabeth A ; Zhang, Lu ; Durant, Graham J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-73f2f9a87ebef0f4099a8dee97be707e9abd659e2e0ac55f34f797f1ab822fe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Anticonvulsants - chemical synthesis</topic><topic>Anticonvulsants - chemistry</topic><topic>Anticonvulsants - metabolism</topic><topic>Anticonvulsants - pharmacology</topic><topic>Anticonvulsants. Antiepileptics. Antiparkinson agents</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - ultrastructure</topic><topic>Calcium - metabolism</topic><topic>Calcium Channel Blockers - chemical synthesis</topic><topic>Calcium Channel Blockers - chemistry</topic><topic>Calcium Channel Blockers - metabolism</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>Calcium Channels - drug effects</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Drug Design</topic><topic>Female</topic><topic>Guanidine - metabolism</topic><topic>Imidazoles - chemical synthesis</topic><topic>Imidazoles - chemistry</topic><topic>Imidazoles - metabolism</topic><topic>Imidazoles - pharmacology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred DBA</topic><topic>Molecular Conformation</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neuropharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>Pyrimidines - chemical synthesis</topic><topic>Pyrimidines - chemistry</topic><topic>Pyrimidines - metabolism</topic><topic>Pyrimidines - pharmacology</topic><topic>Rats</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Seizures - prevention & control</topic><topic>Sodium Channel Blockers</topic><topic>Sodium Channels - biosynthesis</topic><topic>Structure-Activity Relationship</topic><topic>Synaptosomes - drug effects</topic><topic>Synaptosomes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maillard, Michel C</creatorcontrib><creatorcontrib>Perlman, Michael E</creatorcontrib><creatorcontrib>Amitay, Oved</creatorcontrib><creatorcontrib>Baxter, Deborah</creatorcontrib><creatorcontrib>Berlove, David</creatorcontrib><creatorcontrib>Connaughton, Sonia</creatorcontrib><creatorcontrib>Fischer, James B</creatorcontrib><creatorcontrib>Guo, Jun Qing</creatorcontrib><creatorcontrib>Hu, Lain-Yen</creatorcontrib><creatorcontrib>McBurney, Robert N</creatorcontrib><creatorcontrib>Nagy, Peter I</creatorcontrib><creatorcontrib>Subbarao, Katragadda</creatorcontrib><creatorcontrib>Yost, Elizabeth A</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Durant, Graham J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maillard, Michel C</au><au>Perlman, Michael E</au><au>Amitay, Oved</au><au>Baxter, Deborah</au><au>Berlove, David</au><au>Connaughton, Sonia</au><au>Fischer, James B</au><au>Guo, Jun Qing</au><au>Hu, Lain-Yen</au><au>McBurney, Robert N</au><au>Nagy, Peter I</au><au>Subbarao, Katragadda</au><au>Yost, Elizabeth A</au><au>Zhang, Lu</au><au>Durant, Graham J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Synthesis, and Pharmacological Evaluation of Conformationally Constrained Analogues of N,N‘-Diaryl- and N-Aryl-N-aralkylguanidines as Potent Inhibitors of Neuronal Na+ Channels</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>1998-07-30</date><risdate>1998</risdate><volume>41</volume><issue>16</issue><spage>3048</spage><epage>3061</epage><pages>3048-3061</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><coden>JMCMAR</coden><abstract>In the present investigation, the rationale for the design, synthesis, and biological evaluation of potent inhibitors of neuronal Na+ channels is described. N,N‘-Diaryl- and N-aryl-N-aralkylguanidine templates were locked in conformations mimicking the permissible conformations of the flexible diarylguanidinium ion (AS+, AA+, SS+). The resulting set of constrained guanidines termed “lockamers” (cyclophane, quinazoline, aminopyrimidazolines, aminoimidazolines, azocino- and tetrahydroquinolinocarboximidamides) was examined for neuronal Na+ channel blockade properties. Inhibition of [14C]guanidinium ion influx in CHO cells expressing type IIA Na+ channels showed that the aminopyrimidazoline 9b and aminoimidazoline 9d, compounds proposed to lock the N,N‘-diarylguanidinium in an SS+ conformation, were the most potent Na+ channel blockers with IC50's of 0.06 μM, a value 17 times lower than that of the parent flexible compound 18d. The rest of the restricted analogues with 4-p-alkyl substituents retained potency with IC50 values ranging between 0.46 and 2.9 μM. Evaluation in a synaptosomal 45Ca2+ influx assay showed that 9b did not exhibit high selectivity for neuronal Na+ vs Ca2+ channels. The retention of significant neuronal Na+ blockade in all types of semirigid conformers gives evidence for a multiple mode of binding in this class of compounds and can possibly be attributed to a poor structural specificity of the site(s) of action. Compound 9b was also found to be the most active compound in vivo based on the high level of inhibition of seizures exhibited in the DBA/2 mouse model. The pK a value of 9b indicates that 9b binds to the channel in its protonated form, and log D vs pH measurements suggest that ion-pair partitioning contributes to membrane transport. This compound stands out as an interesting lead for further development of neurotherapeutic agents.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>9685245</pmid><doi>10.1021/jm980124a</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2623 |
ispartof | Journal of medicinal chemistry, 1998-07, Vol.41 (16), p.3048-3061 |
issn | 0022-2623 1520-4804 |
language | eng |
recordid | cdi_proquest_miscellaneous_80046385 |
source | ACS Publications; MEDLINE |
subjects | Animals Anticonvulsants - chemical synthesis Anticonvulsants - chemistry Anticonvulsants - metabolism Anticonvulsants - pharmacology Anticonvulsants. Antiepileptics. Antiparkinson agents Biological and medical sciences Biological Transport Brain - drug effects Brain - metabolism Brain - ultrastructure Calcium - metabolism Calcium Channel Blockers - chemical synthesis Calcium Channel Blockers - chemistry Calcium Channel Blockers - metabolism Calcium Channel Blockers - pharmacology Calcium Channels - drug effects CHO Cells Cricetinae Drug Design Female Guanidine - metabolism Imidazoles - chemical synthesis Imidazoles - chemistry Imidazoles - metabolism Imidazoles - pharmacology Male Medical sciences Mice Mice, Inbred DBA Molecular Conformation Neurons - drug effects Neurons - metabolism Neuropharmacology Pharmacology. Drug treatments Pyrimidines - chemical synthesis Pyrimidines - chemistry Pyrimidines - metabolism Pyrimidines - pharmacology Rats Receptors, N-Methyl-D-Aspartate - metabolism Seizures - prevention & control Sodium Channel Blockers Sodium Channels - biosynthesis Structure-Activity Relationship Synaptosomes - drug effects Synaptosomes - metabolism |
title | Design, Synthesis, and Pharmacological Evaluation of Conformationally Constrained Analogues of N,N‘-Diaryl- and N-Aryl-N-aralkylguanidines as Potent Inhibitors of Neuronal Na+ Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Synthesis,%20and%20Pharmacological%20Evaluation%20of%20Conformationally%20Constrained%20Analogues%20of%20N,N%E2%80%98-Diaryl-%20and%20N-Aryl-N-aralkylguanidines%20as%20Potent%20Inhibitors%20of%20Neuronal%20Na+%20Channels&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Maillard,%20Michel%20C&rft.date=1998-07-30&rft.volume=41&rft.issue=16&rft.spage=3048&rft.epage=3061&rft.pages=3048-3061&rft.issn=0022-2623&rft.eissn=1520-4804&rft.coden=JMCMAR&rft_id=info:doi/10.1021/jm980124a&rft_dat=%3Cproquest_cross%3E80046385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80046385&rft_id=info:pmid/9685245&rfr_iscdi=true |