Design, Synthesis, and Pharmacological Evaluation of Conformationally Constrained Analogues of N,N‘-Diaryl- and N-Aryl-N-aralkylguanidines as Potent Inhibitors of Neuronal Na+ Channels

In the present investigation, the rationale for the design, synthesis, and biological evaluation of potent inhibitors of neuronal Na+ channels is described. N,N‘-Diaryl- and N-aryl-N-aralkylguanidine templates were locked in conformations mimicking the permissible conformations of the flexible diary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 1998-07, Vol.41 (16), p.3048-3061
Hauptverfasser: Maillard, Michel C, Perlman, Michael E, Amitay, Oved, Baxter, Deborah, Berlove, David, Connaughton, Sonia, Fischer, James B, Guo, Jun Qing, Hu, Lain-Yen, McBurney, Robert N, Nagy, Peter I, Subbarao, Katragadda, Yost, Elizabeth A, Zhang, Lu, Durant, Graham J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3061
container_issue 16
container_start_page 3048
container_title Journal of medicinal chemistry
container_volume 41
creator Maillard, Michel C
Perlman, Michael E
Amitay, Oved
Baxter, Deborah
Berlove, David
Connaughton, Sonia
Fischer, James B
Guo, Jun Qing
Hu, Lain-Yen
McBurney, Robert N
Nagy, Peter I
Subbarao, Katragadda
Yost, Elizabeth A
Zhang, Lu
Durant, Graham J
description In the present investigation, the rationale for the design, synthesis, and biological evaluation of potent inhibitors of neuronal Na+ channels is described. N,N‘-Diaryl- and N-aryl-N-aralkylguanidine templates were locked in conformations mimicking the permissible conformations of the flexible diarylguanidinium ion (AS+, AA+, SS+). The resulting set of constrained guanidines termed “lockamers” (cyclophane, quinazoline, aminopyrimidazolines, aminoimidazolines, azocino- and tetrahydroquinolinocarboximidamides) was examined for neuronal Na+ channel blockade properties. Inhibition of [14C]guanidinium ion influx in CHO cells expressing type IIA Na+ channels showed that the aminopyrimidazoline 9b and aminoimidazoline 9d, compounds proposed to lock the N,N‘-diarylguanidinium in an SS+ conformation, were the most potent Na+ channel blockers with IC50's of 0.06 μM, a value 17 times lower than that of the parent flexible compound 18d. The rest of the restricted analogues with 4-p-alkyl substituents retained potency with IC50 values ranging between 0.46 and 2.9 μM. Evaluation in a synaptosomal 45Ca2+ influx assay showed that 9b did not exhibit high selectivity for neuronal Na+ vs Ca2+ channels. The retention of significant neuronal Na+ blockade in all types of semirigid conformers gives evidence for a multiple mode of binding in this class of compounds and can possibly be attributed to a poor structural specificity of the site(s) of action. Compound 9b was also found to be the most active compound in vivo based on the high level of inhibition of seizures exhibited in the DBA/2 mouse model. The pK a value of 9b indicates that 9b binds to the channel in its protonated form, and log D vs pH measurements suggest that ion-pair partitioning contributes to membrane transport. This compound stands out as an interesting lead for further development of neurotherapeutic agents.
doi_str_mv 10.1021/jm980124a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_80046385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>80046385</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-73f2f9a87ebef0f4099a8dee97be707e9abd659e2e0ac55f34f797f1ab822fe23</originalsourceid><addsrcrecordid>eNptkc9uEzEQxlcIVELhwAMg-UCREFnwev949xilpRRVIaJBHK3Z3XHi1GsXexeRG4_Bs_A4fZJ6SZQTJ8_M9_Nnz0wUvUzo-4Sy5MO2q0qasAweRZMkZzTOSpo9jiaUMhazgqVPo2febymlacLSk-ikKsqcZfkk-nuOXq3NlNzsTL8JsZ8SMC1ZbsB10Fht16oBTS5-gh6gV9YQK8ncGmmDPuag9W4s-N6BMtiSWSjZ9YB-JBfTxf3vP_G5ArfT8T_rRTwb40UMDvTtTq8HMKoNVz0BT5a2R9OTK7NRteqt27vg4MaXyALekfkGjEHtn0dPJGiPLw7nafTt48Vq_im-_nJ5NZ9dx5Dyqo95KpmsoORYo6Qyo1VIWsSK18gpxwrqtsgrZEihyXOZZpJXXCZQl4xJZOlp9Gbve-fsj9BWLzrlG9QaDNrBi5LSrEjLPIBv92DjrPcOpbhzqguNi4SKcU_iuKfAvjqYDnWH7ZE8LCborw86-DB_6cA0yh8xlhZhmTxg8R5TvsdfRxncrSh4ynOxWt4Idrn6_J3Nv4oy8Gd7HhovtnZwYaj-P997AFvLucI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>80046385</pqid></control><display><type>article</type><title>Design, Synthesis, and Pharmacological Evaluation of Conformationally Constrained Analogues of N,N‘-Diaryl- and N-Aryl-N-aralkylguanidines as Potent Inhibitors of Neuronal Na+ Channels</title><source>ACS Publications</source><source>MEDLINE</source><creator>Maillard, Michel C ; Perlman, Michael E ; Amitay, Oved ; Baxter, Deborah ; Berlove, David ; Connaughton, Sonia ; Fischer, James B ; Guo, Jun Qing ; Hu, Lain-Yen ; McBurney, Robert N ; Nagy, Peter I ; Subbarao, Katragadda ; Yost, Elizabeth A ; Zhang, Lu ; Durant, Graham J</creator><creatorcontrib>Maillard, Michel C ; Perlman, Michael E ; Amitay, Oved ; Baxter, Deborah ; Berlove, David ; Connaughton, Sonia ; Fischer, James B ; Guo, Jun Qing ; Hu, Lain-Yen ; McBurney, Robert N ; Nagy, Peter I ; Subbarao, Katragadda ; Yost, Elizabeth A ; Zhang, Lu ; Durant, Graham J</creatorcontrib><description>In the present investigation, the rationale for the design, synthesis, and biological evaluation of potent inhibitors of neuronal Na+ channels is described. N,N‘-Diaryl- and N-aryl-N-aralkylguanidine templates were locked in conformations mimicking the permissible conformations of the flexible diarylguanidinium ion (AS+, AA+, SS+). The resulting set of constrained guanidines termed “lockamers” (cyclophane, quinazoline, aminopyrimidazolines, aminoimidazolines, azocino- and tetrahydroquinolinocarboximidamides) was examined for neuronal Na+ channel blockade properties. Inhibition of [14C]guanidinium ion influx in CHO cells expressing type IIA Na+ channels showed that the aminopyrimidazoline 9b and aminoimidazoline 9d, compounds proposed to lock the N,N‘-diarylguanidinium in an SS+ conformation, were the most potent Na+ channel blockers with IC50's of 0.06 μM, a value 17 times lower than that of the parent flexible compound 18d. The rest of the restricted analogues with 4-p-alkyl substituents retained potency with IC50 values ranging between 0.46 and 2.9 μM. Evaluation in a synaptosomal 45Ca2+ influx assay showed that 9b did not exhibit high selectivity for neuronal Na+ vs Ca2+ channels. The retention of significant neuronal Na+ blockade in all types of semirigid conformers gives evidence for a multiple mode of binding in this class of compounds and can possibly be attributed to a poor structural specificity of the site(s) of action. Compound 9b was also found to be the most active compound in vivo based on the high level of inhibition of seizures exhibited in the DBA/2 mouse model. The pK a value of 9b indicates that 9b binds to the channel in its protonated form, and log D vs pH measurements suggest that ion-pair partitioning contributes to membrane transport. This compound stands out as an interesting lead for further development of neurotherapeutic agents.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/jm980124a</identifier><identifier>PMID: 9685245</identifier><identifier>CODEN: JMCMAR</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Animals ; Anticonvulsants - chemical synthesis ; Anticonvulsants - chemistry ; Anticonvulsants - metabolism ; Anticonvulsants - pharmacology ; Anticonvulsants. Antiepileptics. Antiparkinson agents ; Biological and medical sciences ; Biological Transport ; Brain - drug effects ; Brain - metabolism ; Brain - ultrastructure ; Calcium - metabolism ; Calcium Channel Blockers - chemical synthesis ; Calcium Channel Blockers - chemistry ; Calcium Channel Blockers - metabolism ; Calcium Channel Blockers - pharmacology ; Calcium Channels - drug effects ; CHO Cells ; Cricetinae ; Drug Design ; Female ; Guanidine - metabolism ; Imidazoles - chemical synthesis ; Imidazoles - chemistry ; Imidazoles - metabolism ; Imidazoles - pharmacology ; Male ; Medical sciences ; Mice ; Mice, Inbred DBA ; Molecular Conformation ; Neurons - drug effects ; Neurons - metabolism ; Neuropharmacology ; Pharmacology. Drug treatments ; Pyrimidines - chemical synthesis ; Pyrimidines - chemistry ; Pyrimidines - metabolism ; Pyrimidines - pharmacology ; Rats ; Receptors, N-Methyl-D-Aspartate - metabolism ; Seizures - prevention &amp; control ; Sodium Channel Blockers ; Sodium Channels - biosynthesis ; Structure-Activity Relationship ; Synaptosomes - drug effects ; Synaptosomes - metabolism</subject><ispartof>Journal of medicinal chemistry, 1998-07, Vol.41 (16), p.3048-3061</ispartof><rights>Copyright © 1998 American Chemical Society</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-73f2f9a87ebef0f4099a8dee97be707e9abd659e2e0ac55f34f797f1ab822fe23</citedby><cites>FETCH-LOGICAL-a379t-73f2f9a87ebef0f4099a8dee97be707e9abd659e2e0ac55f34f797f1ab822fe23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jm980124a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jm980124a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2360007$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9685245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maillard, Michel C</creatorcontrib><creatorcontrib>Perlman, Michael E</creatorcontrib><creatorcontrib>Amitay, Oved</creatorcontrib><creatorcontrib>Baxter, Deborah</creatorcontrib><creatorcontrib>Berlove, David</creatorcontrib><creatorcontrib>Connaughton, Sonia</creatorcontrib><creatorcontrib>Fischer, James B</creatorcontrib><creatorcontrib>Guo, Jun Qing</creatorcontrib><creatorcontrib>Hu, Lain-Yen</creatorcontrib><creatorcontrib>McBurney, Robert N</creatorcontrib><creatorcontrib>Nagy, Peter I</creatorcontrib><creatorcontrib>Subbarao, Katragadda</creatorcontrib><creatorcontrib>Yost, Elizabeth A</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Durant, Graham J</creatorcontrib><title>Design, Synthesis, and Pharmacological Evaluation of Conformationally Constrained Analogues of N,N‘-Diaryl- and N-Aryl-N-aralkylguanidines as Potent Inhibitors of Neuronal Na+ Channels</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>In the present investigation, the rationale for the design, synthesis, and biological evaluation of potent inhibitors of neuronal Na+ channels is described. N,N‘-Diaryl- and N-aryl-N-aralkylguanidine templates were locked in conformations mimicking the permissible conformations of the flexible diarylguanidinium ion (AS+, AA+, SS+). The resulting set of constrained guanidines termed “lockamers” (cyclophane, quinazoline, aminopyrimidazolines, aminoimidazolines, azocino- and tetrahydroquinolinocarboximidamides) was examined for neuronal Na+ channel blockade properties. Inhibition of [14C]guanidinium ion influx in CHO cells expressing type IIA Na+ channels showed that the aminopyrimidazoline 9b and aminoimidazoline 9d, compounds proposed to lock the N,N‘-diarylguanidinium in an SS+ conformation, were the most potent Na+ channel blockers with IC50's of 0.06 μM, a value 17 times lower than that of the parent flexible compound 18d. The rest of the restricted analogues with 4-p-alkyl substituents retained potency with IC50 values ranging between 0.46 and 2.9 μM. Evaluation in a synaptosomal 45Ca2+ influx assay showed that 9b did not exhibit high selectivity for neuronal Na+ vs Ca2+ channels. The retention of significant neuronal Na+ blockade in all types of semirigid conformers gives evidence for a multiple mode of binding in this class of compounds and can possibly be attributed to a poor structural specificity of the site(s) of action. Compound 9b was also found to be the most active compound in vivo based on the high level of inhibition of seizures exhibited in the DBA/2 mouse model. The pK a value of 9b indicates that 9b binds to the channel in its protonated form, and log D vs pH measurements suggest that ion-pair partitioning contributes to membrane transport. This compound stands out as an interesting lead for further development of neurotherapeutic agents.</description><subject>Animals</subject><subject>Anticonvulsants - chemical synthesis</subject><subject>Anticonvulsants - chemistry</subject><subject>Anticonvulsants - metabolism</subject><subject>Anticonvulsants - pharmacology</subject><subject>Anticonvulsants. Antiepileptics. Antiparkinson agents</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Brain - ultrastructure</subject><subject>Calcium - metabolism</subject><subject>Calcium Channel Blockers - chemical synthesis</subject><subject>Calcium Channel Blockers - chemistry</subject><subject>Calcium Channel Blockers - metabolism</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>Calcium Channels - drug effects</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Drug Design</subject><subject>Female</subject><subject>Guanidine - metabolism</subject><subject>Imidazoles - chemical synthesis</subject><subject>Imidazoles - chemistry</subject><subject>Imidazoles - metabolism</subject><subject>Imidazoles - pharmacology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred DBA</subject><subject>Molecular Conformation</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neuropharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>Pyrimidines - chemical synthesis</subject><subject>Pyrimidines - chemistry</subject><subject>Pyrimidines - metabolism</subject><subject>Pyrimidines - pharmacology</subject><subject>Rats</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Seizures - prevention &amp; control</subject><subject>Sodium Channel Blockers</subject><subject>Sodium Channels - biosynthesis</subject><subject>Structure-Activity Relationship</subject><subject>Synaptosomes - drug effects</subject><subject>Synaptosomes - metabolism</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc9uEzEQxlcIVELhwAMg-UCREFnwev949xilpRRVIaJBHK3Z3XHi1GsXexeRG4_Bs_A4fZJ6SZQTJ8_M9_Nnz0wUvUzo-4Sy5MO2q0qasAweRZMkZzTOSpo9jiaUMhazgqVPo2febymlacLSk-ikKsqcZfkk-nuOXq3NlNzsTL8JsZ8SMC1ZbsB10Fht16oBTS5-gh6gV9YQK8ncGmmDPuag9W4s-N6BMtiSWSjZ9YB-JBfTxf3vP_G5ArfT8T_rRTwb40UMDvTtTq8HMKoNVz0BT5a2R9OTK7NRteqt27vg4MaXyALekfkGjEHtn0dPJGiPLw7nafTt48Vq_im-_nJ5NZ9dx5Dyqo95KpmsoORYo6Qyo1VIWsSK18gpxwrqtsgrZEihyXOZZpJXXCZQl4xJZOlp9Gbve-fsj9BWLzrlG9QaDNrBi5LSrEjLPIBv92DjrPcOpbhzqguNi4SKcU_iuKfAvjqYDnWH7ZE8LCborw86-DB_6cA0yh8xlhZhmTxg8R5TvsdfRxncrSh4ynOxWt4Idrn6_J3Nv4oy8Gd7HhovtnZwYaj-P997AFvLucI</recordid><startdate>19980730</startdate><enddate>19980730</enddate><creator>Maillard, Michel C</creator><creator>Perlman, Michael E</creator><creator>Amitay, Oved</creator><creator>Baxter, Deborah</creator><creator>Berlove, David</creator><creator>Connaughton, Sonia</creator><creator>Fischer, James B</creator><creator>Guo, Jun Qing</creator><creator>Hu, Lain-Yen</creator><creator>McBurney, Robert N</creator><creator>Nagy, Peter I</creator><creator>Subbarao, Katragadda</creator><creator>Yost, Elizabeth A</creator><creator>Zhang, Lu</creator><creator>Durant, Graham J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980730</creationdate><title>Design, Synthesis, and Pharmacological Evaluation of Conformationally Constrained Analogues of N,N‘-Diaryl- and N-Aryl-N-aralkylguanidines as Potent Inhibitors of Neuronal Na+ Channels</title><author>Maillard, Michel C ; Perlman, Michael E ; Amitay, Oved ; Baxter, Deborah ; Berlove, David ; Connaughton, Sonia ; Fischer, James B ; Guo, Jun Qing ; Hu, Lain-Yen ; McBurney, Robert N ; Nagy, Peter I ; Subbarao, Katragadda ; Yost, Elizabeth A ; Zhang, Lu ; Durant, Graham J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-73f2f9a87ebef0f4099a8dee97be707e9abd659e2e0ac55f34f797f1ab822fe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Anticonvulsants - chemical synthesis</topic><topic>Anticonvulsants - chemistry</topic><topic>Anticonvulsants - metabolism</topic><topic>Anticonvulsants - pharmacology</topic><topic>Anticonvulsants. Antiepileptics. Antiparkinson agents</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Brain - ultrastructure</topic><topic>Calcium - metabolism</topic><topic>Calcium Channel Blockers - chemical synthesis</topic><topic>Calcium Channel Blockers - chemistry</topic><topic>Calcium Channel Blockers - metabolism</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>Calcium Channels - drug effects</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Drug Design</topic><topic>Female</topic><topic>Guanidine - metabolism</topic><topic>Imidazoles - chemical synthesis</topic><topic>Imidazoles - chemistry</topic><topic>Imidazoles - metabolism</topic><topic>Imidazoles - pharmacology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred DBA</topic><topic>Molecular Conformation</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neuropharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>Pyrimidines - chemical synthesis</topic><topic>Pyrimidines - chemistry</topic><topic>Pyrimidines - metabolism</topic><topic>Pyrimidines - pharmacology</topic><topic>Rats</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Seizures - prevention &amp; control</topic><topic>Sodium Channel Blockers</topic><topic>Sodium Channels - biosynthesis</topic><topic>Structure-Activity Relationship</topic><topic>Synaptosomes - drug effects</topic><topic>Synaptosomes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maillard, Michel C</creatorcontrib><creatorcontrib>Perlman, Michael E</creatorcontrib><creatorcontrib>Amitay, Oved</creatorcontrib><creatorcontrib>Baxter, Deborah</creatorcontrib><creatorcontrib>Berlove, David</creatorcontrib><creatorcontrib>Connaughton, Sonia</creatorcontrib><creatorcontrib>Fischer, James B</creatorcontrib><creatorcontrib>Guo, Jun Qing</creatorcontrib><creatorcontrib>Hu, Lain-Yen</creatorcontrib><creatorcontrib>McBurney, Robert N</creatorcontrib><creatorcontrib>Nagy, Peter I</creatorcontrib><creatorcontrib>Subbarao, Katragadda</creatorcontrib><creatorcontrib>Yost, Elizabeth A</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Durant, Graham J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maillard, Michel C</au><au>Perlman, Michael E</au><au>Amitay, Oved</au><au>Baxter, Deborah</au><au>Berlove, David</au><au>Connaughton, Sonia</au><au>Fischer, James B</au><au>Guo, Jun Qing</au><au>Hu, Lain-Yen</au><au>McBurney, Robert N</au><au>Nagy, Peter I</au><au>Subbarao, Katragadda</au><au>Yost, Elizabeth A</au><au>Zhang, Lu</au><au>Durant, Graham J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design, Synthesis, and Pharmacological Evaluation of Conformationally Constrained Analogues of N,N‘-Diaryl- and N-Aryl-N-aralkylguanidines as Potent Inhibitors of Neuronal Na+ Channels</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>1998-07-30</date><risdate>1998</risdate><volume>41</volume><issue>16</issue><spage>3048</spage><epage>3061</epage><pages>3048-3061</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><coden>JMCMAR</coden><abstract>In the present investigation, the rationale for the design, synthesis, and biological evaluation of potent inhibitors of neuronal Na+ channels is described. N,N‘-Diaryl- and N-aryl-N-aralkylguanidine templates were locked in conformations mimicking the permissible conformations of the flexible diarylguanidinium ion (AS+, AA+, SS+). The resulting set of constrained guanidines termed “lockamers” (cyclophane, quinazoline, aminopyrimidazolines, aminoimidazolines, azocino- and tetrahydroquinolinocarboximidamides) was examined for neuronal Na+ channel blockade properties. Inhibition of [14C]guanidinium ion influx in CHO cells expressing type IIA Na+ channels showed that the aminopyrimidazoline 9b and aminoimidazoline 9d, compounds proposed to lock the N,N‘-diarylguanidinium in an SS+ conformation, were the most potent Na+ channel blockers with IC50's of 0.06 μM, a value 17 times lower than that of the parent flexible compound 18d. The rest of the restricted analogues with 4-p-alkyl substituents retained potency with IC50 values ranging between 0.46 and 2.9 μM. Evaluation in a synaptosomal 45Ca2+ influx assay showed that 9b did not exhibit high selectivity for neuronal Na+ vs Ca2+ channels. The retention of significant neuronal Na+ blockade in all types of semirigid conformers gives evidence for a multiple mode of binding in this class of compounds and can possibly be attributed to a poor structural specificity of the site(s) of action. Compound 9b was also found to be the most active compound in vivo based on the high level of inhibition of seizures exhibited in the DBA/2 mouse model. The pK a value of 9b indicates that 9b binds to the channel in its protonated form, and log D vs pH measurements suggest that ion-pair partitioning contributes to membrane transport. This compound stands out as an interesting lead for further development of neurotherapeutic agents.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>9685245</pmid><doi>10.1021/jm980124a</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 1998-07, Vol.41 (16), p.3048-3061
issn 0022-2623
1520-4804
language eng
recordid cdi_proquest_miscellaneous_80046385
source ACS Publications; MEDLINE
subjects Animals
Anticonvulsants - chemical synthesis
Anticonvulsants - chemistry
Anticonvulsants - metabolism
Anticonvulsants - pharmacology
Anticonvulsants. Antiepileptics. Antiparkinson agents
Biological and medical sciences
Biological Transport
Brain - drug effects
Brain - metabolism
Brain - ultrastructure
Calcium - metabolism
Calcium Channel Blockers - chemical synthesis
Calcium Channel Blockers - chemistry
Calcium Channel Blockers - metabolism
Calcium Channel Blockers - pharmacology
Calcium Channels - drug effects
CHO Cells
Cricetinae
Drug Design
Female
Guanidine - metabolism
Imidazoles - chemical synthesis
Imidazoles - chemistry
Imidazoles - metabolism
Imidazoles - pharmacology
Male
Medical sciences
Mice
Mice, Inbred DBA
Molecular Conformation
Neurons - drug effects
Neurons - metabolism
Neuropharmacology
Pharmacology. Drug treatments
Pyrimidines - chemical synthesis
Pyrimidines - chemistry
Pyrimidines - metabolism
Pyrimidines - pharmacology
Rats
Receptors, N-Methyl-D-Aspartate - metabolism
Seizures - prevention & control
Sodium Channel Blockers
Sodium Channels - biosynthesis
Structure-Activity Relationship
Synaptosomes - drug effects
Synaptosomes - metabolism
title Design, Synthesis, and Pharmacological Evaluation of Conformationally Constrained Analogues of N,N‘-Diaryl- and N-Aryl-N-aralkylguanidines as Potent Inhibitors of Neuronal Na+ Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design,%20Synthesis,%20and%20Pharmacological%20Evaluation%20of%20Conformationally%20Constrained%20Analogues%20of%20N,N%E2%80%98-Diaryl-%20and%20N-Aryl-N-aralkylguanidines%20as%20Potent%20Inhibitors%20of%20Neuronal%20Na+%20Channels&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Maillard,%20Michel%20C&rft.date=1998-07-30&rft.volume=41&rft.issue=16&rft.spage=3048&rft.epage=3061&rft.pages=3048-3061&rft.issn=0022-2623&rft.eissn=1520-4804&rft.coden=JMCMAR&rft_id=info:doi/10.1021/jm980124a&rft_dat=%3Cproquest_cross%3E80046385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=80046385&rft_id=info:pmid/9685245&rfr_iscdi=true