Refinement of 3D structure of bovine lens αA-crystallin

In absence of 3D structures for α-crystallin subunits, αA and αB, we utilized a number of experimental and molecular modeling techniques to generate working 3D models of these polypeptides (Farnsworth et al., 1994. In Molecular Modeling: From Virtual Tools to Real Problems (Eds. Kumosinski, T.F. and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 1998-05, Vol.22 (3), p.175-185
Hauptverfasser: Farnsworth, P.N, Frauwirth, H, Groth-Vasselli, B, Singh, Kamalendra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 3
container_start_page 175
container_title International journal of biological macromolecules
container_volume 22
creator Farnsworth, P.N
Frauwirth, H
Groth-Vasselli, B
Singh, Kamalendra
description In absence of 3D structures for α-crystallin subunits, αA and αB, we utilized a number of experimental and molecular modeling techniques to generate working 3D models of these polypeptides (Farnsworth et al., 1994. In Molecular Modeling: From Virtual Tools to Real Problems (Eds. Kumosinski, T.F. and Liebman, M.N.) ACS Symposium Series 576, Ch. 9:123–134, 1994, ACS Books, Washington DC). The refinement of the initial bovine αA model was achieved using a more accurate estimation of secondary structure by new/updated methods for analyzing the far UV-CD spectra and by neural network secondary structure predictions in combination with database searches. The spectroscopic study reveals that α-crystallin is not an all β-sheet protein but contains ∼17% α-helices, ∼33% β-structures and ∼50% turns and coils. The refinement of the αA structure results in an elongate, asymmetric amphipathic molecule. The hydrophobic N-terminal domain imparts the driving force for subunit aggregation while the more flexible, polar C-terminal domain imparts aggregate solubility. In our quaternary structure of the aggregate, the monomer is the minimal cooperative subunit. In bovine αA, the highly negatively charged C-terminal domain has three small positive areas which may participate in dimer or tetramer formation of independently expressed C-terminal domains. The electrostatic potential of positive areas is modulated and become more negative with phosphorylation and ATP binding. The refined bovine αA model was used to construct αA models for the human, chick and dogfish shark. A high degree of conservation of the three dimensional structure and the electrostatic potential was observed. Our proposed open micellar quaternary structure correlates well with experimental data accumulated over the past several decades. The structure is also predictive of the more recent data.
doi_str_mv 10.1016/S0141-8130(98)00015-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79975171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813098000154</els_id><sourcerecordid>79975171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b5dfc423b57cdc758c4d0021266eb8635e9dc1f32c2d85ed0ba049375b10ee063</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpSdO0nxDwqrQLtyPLkqVVCekTAoU-1sKWxqDiRyrZgXxWf6TfVOdBtl0NM_fOXOYQMqVwQ4GK23egKY0lZXCl5DUAUB6nR2RMZabioWXHZHywnJKzEL6GqeBUjshICQ6QJWMi37B0DdbYdFFbRuw-Cp3vTdd73PRFuxrUqMImRL8_s9j4dejyqnLNOTkp8yrgxb5OyOfjw8f8OV68Pr3MZ4vYMAFdXHBbmjRhBc-MNRmXJrUACU2EwEIKxlFZQ0uWmMRKjhaKHFLFMl5QQATBJuRyd3fp2-8eQ6drFwxWVd5g2wedKZVxmtHByHdG49sQPJZ66V2d-7WmoDfE9JaY3uDQSuotMZ0Oe9N9QF_UaA9be0SDfrfTcfhy5dDrYBw2Bq3zaDptW_dPwh_ETno5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79975171</pqid></control><display><type>article</type><title>Refinement of 3D structure of bovine lens αA-crystallin</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Farnsworth, P.N ; Frauwirth, H ; Groth-Vasselli, B ; Singh, Kamalendra</creator><creatorcontrib>Farnsworth, P.N ; Frauwirth, H ; Groth-Vasselli, B ; Singh, Kamalendra</creatorcontrib><description>In absence of 3D structures for α-crystallin subunits, αA and αB, we utilized a number of experimental and molecular modeling techniques to generate working 3D models of these polypeptides (Farnsworth et al., 1994. In Molecular Modeling: From Virtual Tools to Real Problems (Eds. Kumosinski, T.F. and Liebman, M.N.) ACS Symposium Series 576, Ch. 9:123–134, 1994, ACS Books, Washington DC). The refinement of the initial bovine αA model was achieved using a more accurate estimation of secondary structure by new/updated methods for analyzing the far UV-CD spectra and by neural network secondary structure predictions in combination with database searches. The spectroscopic study reveals that α-crystallin is not an all β-sheet protein but contains ∼17% α-helices, ∼33% β-structures and ∼50% turns and coils. The refinement of the αA structure results in an elongate, asymmetric amphipathic molecule. The hydrophobic N-terminal domain imparts the driving force for subunit aggregation while the more flexible, polar C-terminal domain imparts aggregate solubility. In our quaternary structure of the aggregate, the monomer is the minimal cooperative subunit. In bovine αA, the highly negatively charged C-terminal domain has three small positive areas which may participate in dimer or tetramer formation of independently expressed C-terminal domains. The electrostatic potential of positive areas is modulated and become more negative with phosphorylation and ATP binding. The refined bovine αA model was used to construct αA models for the human, chick and dogfish shark. A high degree of conservation of the three dimensional structure and the electrostatic potential was observed. Our proposed open micellar quaternary structure correlates well with experimental data accumulated over the past several decades. The structure is also predictive of the more recent data.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/S0141-8130(98)00015-4</identifier><identifier>PMID: 9650072</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>3D molecular model ; Amino Acid Sequence ; Animals ; Cattle ; Chickens ; Circular Dichroism ; Conserved Sequence ; Crystallins - chemistry ; Crystallins - genetics ; Humans ; Lens ; Macromolecular Substances ; Micellar structure ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Homology, Amino Acid ; Sharks ; Small heat shock proteins ; Static Electricity ; α-Crystallin</subject><ispartof>International journal of biological macromolecules, 1998-05, Vol.22 (3), p.175-185</ispartof><rights>1997 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b5dfc423b57cdc758c4d0021266eb8635e9dc1f32c2d85ed0ba049375b10ee063</citedby><cites>FETCH-LOGICAL-c360t-b5dfc423b57cdc758c4d0021266eb8635e9dc1f32c2d85ed0ba049375b10ee063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141813098000154$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9650072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farnsworth, P.N</creatorcontrib><creatorcontrib>Frauwirth, H</creatorcontrib><creatorcontrib>Groth-Vasselli, B</creatorcontrib><creatorcontrib>Singh, Kamalendra</creatorcontrib><title>Refinement of 3D structure of bovine lens αA-crystallin</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>In absence of 3D structures for α-crystallin subunits, αA and αB, we utilized a number of experimental and molecular modeling techniques to generate working 3D models of these polypeptides (Farnsworth et al., 1994. In Molecular Modeling: From Virtual Tools to Real Problems (Eds. Kumosinski, T.F. and Liebman, M.N.) ACS Symposium Series 576, Ch. 9:123–134, 1994, ACS Books, Washington DC). The refinement of the initial bovine αA model was achieved using a more accurate estimation of secondary structure by new/updated methods for analyzing the far UV-CD spectra and by neural network secondary structure predictions in combination with database searches. The spectroscopic study reveals that α-crystallin is not an all β-sheet protein but contains ∼17% α-helices, ∼33% β-structures and ∼50% turns and coils. The refinement of the αA structure results in an elongate, asymmetric amphipathic molecule. The hydrophobic N-terminal domain imparts the driving force for subunit aggregation while the more flexible, polar C-terminal domain imparts aggregate solubility. In our quaternary structure of the aggregate, the monomer is the minimal cooperative subunit. In bovine αA, the highly negatively charged C-terminal domain has three small positive areas which may participate in dimer or tetramer formation of independently expressed C-terminal domains. The electrostatic potential of positive areas is modulated and become more negative with phosphorylation and ATP binding. The refined bovine αA model was used to construct αA models for the human, chick and dogfish shark. A high degree of conservation of the three dimensional structure and the electrostatic potential was observed. Our proposed open micellar quaternary structure correlates well with experimental data accumulated over the past several decades. The structure is also predictive of the more recent data.</description><subject>3D molecular model</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Cattle</subject><subject>Chickens</subject><subject>Circular Dichroism</subject><subject>Conserved Sequence</subject><subject>Crystallins - chemistry</subject><subject>Crystallins - genetics</subject><subject>Humans</subject><subject>Lens</subject><subject>Macromolecular Substances</subject><subject>Micellar structure</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Sequence Homology, Amino Acid</subject><subject>Sharks</subject><subject>Small heat shock proteins</subject><subject>Static Electricity</subject><subject>α-Crystallin</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtqwzAQRUVpSdO0nxDwqrQLtyPLkqVVCekTAoU-1sKWxqDiRyrZgXxWf6TfVOdBtl0NM_fOXOYQMqVwQ4GK23egKY0lZXCl5DUAUB6nR2RMZabioWXHZHywnJKzEL6GqeBUjshICQ6QJWMi37B0DdbYdFFbRuw-Cp3vTdd73PRFuxrUqMImRL8_s9j4dejyqnLNOTkp8yrgxb5OyOfjw8f8OV68Pr3MZ4vYMAFdXHBbmjRhBc-MNRmXJrUACU2EwEIKxlFZQ0uWmMRKjhaKHFLFMl5QQATBJuRyd3fp2-8eQ6drFwxWVd5g2wedKZVxmtHByHdG49sQPJZ66V2d-7WmoDfE9JaY3uDQSuotMZ0Oe9N9QF_UaA9be0SDfrfTcfhy5dDrYBw2Bq3zaDptW_dPwh_ETno5</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>Farnsworth, P.N</creator><creator>Frauwirth, H</creator><creator>Groth-Vasselli, B</creator><creator>Singh, Kamalendra</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980501</creationdate><title>Refinement of 3D structure of bovine lens αA-crystallin</title><author>Farnsworth, P.N ; Frauwirth, H ; Groth-Vasselli, B ; Singh, Kamalendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b5dfc423b57cdc758c4d0021266eb8635e9dc1f32c2d85ed0ba049375b10ee063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>3D molecular model</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Cattle</topic><topic>Chickens</topic><topic>Circular Dichroism</topic><topic>Conserved Sequence</topic><topic>Crystallins - chemistry</topic><topic>Crystallins - genetics</topic><topic>Humans</topic><topic>Lens</topic><topic>Macromolecular Substances</topic><topic>Micellar structure</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Sequence Homology, Amino Acid</topic><topic>Sharks</topic><topic>Small heat shock proteins</topic><topic>Static Electricity</topic><topic>α-Crystallin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farnsworth, P.N</creatorcontrib><creatorcontrib>Frauwirth, H</creatorcontrib><creatorcontrib>Groth-Vasselli, B</creatorcontrib><creatorcontrib>Singh, Kamalendra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farnsworth, P.N</au><au>Frauwirth, H</au><au>Groth-Vasselli, B</au><au>Singh, Kamalendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refinement of 3D structure of bovine lens αA-crystallin</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>1998-05-01</date><risdate>1998</risdate><volume>22</volume><issue>3</issue><spage>175</spage><epage>185</epage><pages>175-185</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>In absence of 3D structures for α-crystallin subunits, αA and αB, we utilized a number of experimental and molecular modeling techniques to generate working 3D models of these polypeptides (Farnsworth et al., 1994. In Molecular Modeling: From Virtual Tools to Real Problems (Eds. Kumosinski, T.F. and Liebman, M.N.) ACS Symposium Series 576, Ch. 9:123–134, 1994, ACS Books, Washington DC). The refinement of the initial bovine αA model was achieved using a more accurate estimation of secondary structure by new/updated methods for analyzing the far UV-CD spectra and by neural network secondary structure predictions in combination with database searches. The spectroscopic study reveals that α-crystallin is not an all β-sheet protein but contains ∼17% α-helices, ∼33% β-structures and ∼50% turns and coils. The refinement of the αA structure results in an elongate, asymmetric amphipathic molecule. The hydrophobic N-terminal domain imparts the driving force for subunit aggregation while the more flexible, polar C-terminal domain imparts aggregate solubility. In our quaternary structure of the aggregate, the monomer is the minimal cooperative subunit. In bovine αA, the highly negatively charged C-terminal domain has three small positive areas which may participate in dimer or tetramer formation of independently expressed C-terminal domains. The electrostatic potential of positive areas is modulated and become more negative with phosphorylation and ATP binding. The refined bovine αA model was used to construct αA models for the human, chick and dogfish shark. A high degree of conservation of the three dimensional structure and the electrostatic potential was observed. Our proposed open micellar quaternary structure correlates well with experimental data accumulated over the past several decades. The structure is also predictive of the more recent data.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>9650072</pmid><doi>10.1016/S0141-8130(98)00015-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 1998-05, Vol.22 (3), p.175-185
issn 0141-8130
1879-0003
language eng
recordid cdi_proquest_miscellaneous_79975171
source MEDLINE; Elsevier ScienceDirect Journals
subjects 3D molecular model
Amino Acid Sequence
Animals
Cattle
Chickens
Circular Dichroism
Conserved Sequence
Crystallins - chemistry
Crystallins - genetics
Humans
Lens
Macromolecular Substances
Micellar structure
Models, Molecular
Molecular Sequence Data
Protein Conformation
Protein Structure, Secondary
Protein Structure, Tertiary
Sequence Homology, Amino Acid
Sharks
Small heat shock proteins
Static Electricity
α-Crystallin
title Refinement of 3D structure of bovine lens αA-crystallin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refinement%20of%203D%20structure%20of%20bovine%20lens%20%CE%B1A-crystallin&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Farnsworth,%20P.N&rft.date=1998-05-01&rft.volume=22&rft.issue=3&rft.spage=175&rft.epage=185&rft.pages=175-185&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/S0141-8130(98)00015-4&rft_dat=%3Cproquest_cross%3E79975171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79975171&rft_id=info:pmid/9650072&rft_els_id=S0141813098000154&rfr_iscdi=true