Refinement of 3D structure of bovine lens αA-crystallin
In absence of 3D structures for α-crystallin subunits, αA and αB, we utilized a number of experimental and molecular modeling techniques to generate working 3D models of these polypeptides (Farnsworth et al., 1994. In Molecular Modeling: From Virtual Tools to Real Problems (Eds. Kumosinski, T.F. and...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 1998-05, Vol.22 (3), p.175-185 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | 3 |
container_start_page | 175 |
container_title | International journal of biological macromolecules |
container_volume | 22 |
creator | Farnsworth, P.N Frauwirth, H Groth-Vasselli, B Singh, Kamalendra |
description | In absence of 3D structures for
α-crystallin subunits,
αA and
αB, we utilized a number of experimental and molecular modeling techniques to generate working 3D models of these polypeptides (Farnsworth et al., 1994. In Molecular Modeling: From Virtual Tools to Real Problems (Eds. Kumosinski, T.F. and Liebman, M.N.) ACS Symposium Series 576, Ch. 9:123–134, 1994, ACS Books, Washington DC). The refinement of the initial bovine
αA model was achieved using a more accurate estimation of secondary structure by new/updated methods for analyzing the far UV-CD spectra and by neural network secondary structure predictions in combination with database searches. The spectroscopic study reveals that
α-crystallin is not an all
β-sheet protein but contains ∼17%
α-helices, ∼33%
β-structures and ∼50% turns and coils. The refinement of the
αA structure results in an elongate, asymmetric amphipathic molecule. The hydrophobic N-terminal domain imparts the driving force for subunit aggregation while the more flexible, polar C-terminal domain imparts aggregate solubility. In our quaternary structure of the aggregate, the monomer is the minimal cooperative subunit. In bovine
αA, the highly negatively charged C-terminal domain has three small positive areas which may participate in dimer or tetramer formation of independently expressed C-terminal domains. The electrostatic potential of positive areas is modulated and become more negative with phosphorylation and ATP binding. The refined bovine
αA model was used to construct
αA models for the human, chick and dogfish shark. A high degree of conservation of the three dimensional structure and the electrostatic potential was observed. Our proposed open micellar quaternary structure correlates well with experimental data accumulated over the past several decades. The structure is also predictive of the more recent data. |
doi_str_mv | 10.1016/S0141-8130(98)00015-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79975171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813098000154</els_id><sourcerecordid>79975171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b5dfc423b57cdc758c4d0021266eb8635e9dc1f32c2d85ed0ba049375b10ee063</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpSdO0nxDwqrQLtyPLkqVVCekTAoU-1sKWxqDiRyrZgXxWf6TfVOdBtl0NM_fOXOYQMqVwQ4GK23egKY0lZXCl5DUAUB6nR2RMZabioWXHZHywnJKzEL6GqeBUjshICQ6QJWMi37B0DdbYdFFbRuw-Cp3vTdd73PRFuxrUqMImRL8_s9j4dejyqnLNOTkp8yrgxb5OyOfjw8f8OV68Pr3MZ4vYMAFdXHBbmjRhBc-MNRmXJrUACU2EwEIKxlFZQ0uWmMRKjhaKHFLFMl5QQATBJuRyd3fp2-8eQ6drFwxWVd5g2wedKZVxmtHByHdG49sQPJZ66V2d-7WmoDfE9JaY3uDQSuotMZ0Oe9N9QF_UaA9be0SDfrfTcfhy5dDrYBw2Bq3zaDptW_dPwh_ETno5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79975171</pqid></control><display><type>article</type><title>Refinement of 3D structure of bovine lens αA-crystallin</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Farnsworth, P.N ; Frauwirth, H ; Groth-Vasselli, B ; Singh, Kamalendra</creator><creatorcontrib>Farnsworth, P.N ; Frauwirth, H ; Groth-Vasselli, B ; Singh, Kamalendra</creatorcontrib><description>In absence of 3D structures for
α-crystallin subunits,
αA and
αB, we utilized a number of experimental and molecular modeling techniques to generate working 3D models of these polypeptides (Farnsworth et al., 1994. In Molecular Modeling: From Virtual Tools to Real Problems (Eds. Kumosinski, T.F. and Liebman, M.N.) ACS Symposium Series 576, Ch. 9:123–134, 1994, ACS Books, Washington DC). The refinement of the initial bovine
αA model was achieved using a more accurate estimation of secondary structure by new/updated methods for analyzing the far UV-CD spectra and by neural network secondary structure predictions in combination with database searches. The spectroscopic study reveals that
α-crystallin is not an all
β-sheet protein but contains ∼17%
α-helices, ∼33%
β-structures and ∼50% turns and coils. The refinement of the
αA structure results in an elongate, asymmetric amphipathic molecule. The hydrophobic N-terminal domain imparts the driving force for subunit aggregation while the more flexible, polar C-terminal domain imparts aggregate solubility. In our quaternary structure of the aggregate, the monomer is the minimal cooperative subunit. In bovine
αA, the highly negatively charged C-terminal domain has three small positive areas which may participate in dimer or tetramer formation of independently expressed C-terminal domains. The electrostatic potential of positive areas is modulated and become more negative with phosphorylation and ATP binding. The refined bovine
αA model was used to construct
αA models for the human, chick and dogfish shark. A high degree of conservation of the three dimensional structure and the electrostatic potential was observed. Our proposed open micellar quaternary structure correlates well with experimental data accumulated over the past several decades. The structure is also predictive of the more recent data.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/S0141-8130(98)00015-4</identifier><identifier>PMID: 9650072</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>3D molecular model ; Amino Acid Sequence ; Animals ; Cattle ; Chickens ; Circular Dichroism ; Conserved Sequence ; Crystallins - chemistry ; Crystallins - genetics ; Humans ; Lens ; Macromolecular Substances ; Micellar structure ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Homology, Amino Acid ; Sharks ; Small heat shock proteins ; Static Electricity ; α-Crystallin</subject><ispartof>International journal of biological macromolecules, 1998-05, Vol.22 (3), p.175-185</ispartof><rights>1997 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b5dfc423b57cdc758c4d0021266eb8635e9dc1f32c2d85ed0ba049375b10ee063</citedby><cites>FETCH-LOGICAL-c360t-b5dfc423b57cdc758c4d0021266eb8635e9dc1f32c2d85ed0ba049375b10ee063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141813098000154$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9650072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farnsworth, P.N</creatorcontrib><creatorcontrib>Frauwirth, H</creatorcontrib><creatorcontrib>Groth-Vasselli, B</creatorcontrib><creatorcontrib>Singh, Kamalendra</creatorcontrib><title>Refinement of 3D structure of bovine lens αA-crystallin</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>In absence of 3D structures for
α-crystallin subunits,
αA and
αB, we utilized a number of experimental and molecular modeling techniques to generate working 3D models of these polypeptides (Farnsworth et al., 1994. In Molecular Modeling: From Virtual Tools to Real Problems (Eds. Kumosinski, T.F. and Liebman, M.N.) ACS Symposium Series 576, Ch. 9:123–134, 1994, ACS Books, Washington DC). The refinement of the initial bovine
αA model was achieved using a more accurate estimation of secondary structure by new/updated methods for analyzing the far UV-CD spectra and by neural network secondary structure predictions in combination with database searches. The spectroscopic study reveals that
α-crystallin is not an all
β-sheet protein but contains ∼17%
α-helices, ∼33%
β-structures and ∼50% turns and coils. The refinement of the
αA structure results in an elongate, asymmetric amphipathic molecule. The hydrophobic N-terminal domain imparts the driving force for subunit aggregation while the more flexible, polar C-terminal domain imparts aggregate solubility. In our quaternary structure of the aggregate, the monomer is the minimal cooperative subunit. In bovine
αA, the highly negatively charged C-terminal domain has three small positive areas which may participate in dimer or tetramer formation of independently expressed C-terminal domains. The electrostatic potential of positive areas is modulated and become more negative with phosphorylation and ATP binding. The refined bovine
αA model was used to construct
αA models for the human, chick and dogfish shark. A high degree of conservation of the three dimensional structure and the electrostatic potential was observed. Our proposed open micellar quaternary structure correlates well with experimental data accumulated over the past several decades. The structure is also predictive of the more recent data.</description><subject>3D molecular model</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Cattle</subject><subject>Chickens</subject><subject>Circular Dichroism</subject><subject>Conserved Sequence</subject><subject>Crystallins - chemistry</subject><subject>Crystallins - genetics</subject><subject>Humans</subject><subject>Lens</subject><subject>Macromolecular Substances</subject><subject>Micellar structure</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Sequence Homology, Amino Acid</subject><subject>Sharks</subject><subject>Small heat shock proteins</subject><subject>Static Electricity</subject><subject>α-Crystallin</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtqwzAQRUVpSdO0nxDwqrQLtyPLkqVVCekTAoU-1sKWxqDiRyrZgXxWf6TfVOdBtl0NM_fOXOYQMqVwQ4GK23egKY0lZXCl5DUAUB6nR2RMZabioWXHZHywnJKzEL6GqeBUjshICQ6QJWMi37B0DdbYdFFbRuw-Cp3vTdd73PRFuxrUqMImRL8_s9j4dejyqnLNOTkp8yrgxb5OyOfjw8f8OV68Pr3MZ4vYMAFdXHBbmjRhBc-MNRmXJrUACU2EwEIKxlFZQ0uWmMRKjhaKHFLFMl5QQATBJuRyd3fp2-8eQ6drFwxWVd5g2wedKZVxmtHByHdG49sQPJZ66V2d-7WmoDfE9JaY3uDQSuotMZ0Oe9N9QF_UaA9be0SDfrfTcfhy5dDrYBw2Bq3zaDptW_dPwh_ETno5</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>Farnsworth, P.N</creator><creator>Frauwirth, H</creator><creator>Groth-Vasselli, B</creator><creator>Singh, Kamalendra</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980501</creationdate><title>Refinement of 3D structure of bovine lens αA-crystallin</title><author>Farnsworth, P.N ; Frauwirth, H ; Groth-Vasselli, B ; Singh, Kamalendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b5dfc423b57cdc758c4d0021266eb8635e9dc1f32c2d85ed0ba049375b10ee063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>3D molecular model</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Cattle</topic><topic>Chickens</topic><topic>Circular Dichroism</topic><topic>Conserved Sequence</topic><topic>Crystallins - chemistry</topic><topic>Crystallins - genetics</topic><topic>Humans</topic><topic>Lens</topic><topic>Macromolecular Substances</topic><topic>Micellar structure</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Sequence Homology, Amino Acid</topic><topic>Sharks</topic><topic>Small heat shock proteins</topic><topic>Static Electricity</topic><topic>α-Crystallin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farnsworth, P.N</creatorcontrib><creatorcontrib>Frauwirth, H</creatorcontrib><creatorcontrib>Groth-Vasselli, B</creatorcontrib><creatorcontrib>Singh, Kamalendra</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farnsworth, P.N</au><au>Frauwirth, H</au><au>Groth-Vasselli, B</au><au>Singh, Kamalendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refinement of 3D structure of bovine lens αA-crystallin</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>1998-05-01</date><risdate>1998</risdate><volume>22</volume><issue>3</issue><spage>175</spage><epage>185</epage><pages>175-185</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>In absence of 3D structures for
α-crystallin subunits,
αA and
αB, we utilized a number of experimental and molecular modeling techniques to generate working 3D models of these polypeptides (Farnsworth et al., 1994. In Molecular Modeling: From Virtual Tools to Real Problems (Eds. Kumosinski, T.F. and Liebman, M.N.) ACS Symposium Series 576, Ch. 9:123–134, 1994, ACS Books, Washington DC). The refinement of the initial bovine
αA model was achieved using a more accurate estimation of secondary structure by new/updated methods for analyzing the far UV-CD spectra and by neural network secondary structure predictions in combination with database searches. The spectroscopic study reveals that
α-crystallin is not an all
β-sheet protein but contains ∼17%
α-helices, ∼33%
β-structures and ∼50% turns and coils. The refinement of the
αA structure results in an elongate, asymmetric amphipathic molecule. The hydrophobic N-terminal domain imparts the driving force for subunit aggregation while the more flexible, polar C-terminal domain imparts aggregate solubility. In our quaternary structure of the aggregate, the monomer is the minimal cooperative subunit. In bovine
αA, the highly negatively charged C-terminal domain has three small positive areas which may participate in dimer or tetramer formation of independently expressed C-terminal domains. The electrostatic potential of positive areas is modulated and become more negative with phosphorylation and ATP binding. The refined bovine
αA model was used to construct
αA models for the human, chick and dogfish shark. A high degree of conservation of the three dimensional structure and the electrostatic potential was observed. Our proposed open micellar quaternary structure correlates well with experimental data accumulated over the past several decades. The structure is also predictive of the more recent data.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>9650072</pmid><doi>10.1016/S0141-8130(98)00015-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 1998-05, Vol.22 (3), p.175-185 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_79975171 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | 3D molecular model Amino Acid Sequence Animals Cattle Chickens Circular Dichroism Conserved Sequence Crystallins - chemistry Crystallins - genetics Humans Lens Macromolecular Substances Micellar structure Models, Molecular Molecular Sequence Data Protein Conformation Protein Structure, Secondary Protein Structure, Tertiary Sequence Homology, Amino Acid Sharks Small heat shock proteins Static Electricity α-Crystallin |
title | Refinement of 3D structure of bovine lens αA-crystallin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refinement%20of%203D%20structure%20of%20bovine%20lens%20%CE%B1A-crystallin&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Farnsworth,%20P.N&rft.date=1998-05-01&rft.volume=22&rft.issue=3&rft.spage=175&rft.epage=185&rft.pages=175-185&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/S0141-8130(98)00015-4&rft_dat=%3Cproquest_cross%3E79975171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79975171&rft_id=info:pmid/9650072&rft_els_id=S0141813098000154&rfr_iscdi=true |