The `Ideal Homunculus': decoding neural population signals
Information processing in the nervous system involves the activity of large populations of neurons. It is possible, however, to interpret the activity of relatively small numbers of cells in terms of meaningful aspects of the environment. `Bayesian inference' provides a systematic and effective...
Gespeichert in:
Veröffentlicht in: | Trends in neurosciences (Regular ed.) 1998-06, Vol.21 (6), p.259-265 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 265 |
---|---|
container_issue | 6 |
container_start_page | 259 |
container_title | Trends in neurosciences (Regular ed.) |
container_volume | 21 |
creator | Oram, Mike W. Földiák, Peter Perrett, David I. Oram, Mike W. Sengpiel, Frank |
description | Information processing in the nervous system involves the activity of large populations of neurons. It is possible, however, to interpret the activity of relatively small numbers of cells in terms of meaningful aspects of the environment. `Bayesian inference' provides a systematic and effective method of combining information from multiple cells to accomplish this. It is not a model of a neural mechanism (neither are alternative methods, such as the population vector approach) but a tool for analysing neural signals. It does not require difficult assumptions about the nature of the dimensions underlying cell selectivity, about the distribution and tuning of cell responses or about the way in which information is transmitted and processed. It can be applied to any parameter of neural activity (for example, firing rate or temporal pattern). In this review, we demonstrate the power of Bayesian analysis using examples of visual responses of neurons in primary visual and temporal cortices. We show that interaction between correlation in mean responses to different stimuli (signal) and correlation in response variability within stimuli (noise) can lead to marked improvement of stimulus discrimination using population responses. |
doi_str_mv | 10.1016/S0166-2236(97)01216-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79962021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166223697012162</els_id><sourcerecordid>30946077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-caa8802836975dd2599c9ebad3215be17dc51a5698330c9659f75ef2b5a475913</originalsourceid><addsrcrecordid>eNqFkV1rVDEQhoModVv9CYWDiB8XRzPJyVdvRIraQsELK3gXs8mcmnL2ZJtsBP99s91lL7zpzQzD-8yQvC8hp0A_AAX58UcrsmeMy3dGvafAoE1PyAK00j1Q_espWRyQ5-S4lFtKYdAwHJEjIwcQ3CzI2fUf7H5fBnRTd5FWdfZ1quXtWRfQpxDnm27Gmpu4Tus6uU1Mc1fizeym8oI8G1vDl_t-Qn5-_XJ9ftFfff92ef75qveDMZveO6c1ZZpLo0QITBjjDS5d4AzEEkEFL8AJaTTn1BspzKgEjmwp3KCEAX5C3uzurnO6q1g2dhWLx2lyM6ZarDJGMsoeB0EOSmngDXz1H3ibat7-ybJmHzAhdIPEDvI5lZJxtOscVy7_s0DtNgH7kIDd2muNsg8JWNb2TvfH63KF4bC1t7zpr_e6K95NY3azj-WAMa6lFrRhn3YYNmv_Rsy2-IizxxAz-o0NKT7ykHv6NJ-u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218712558</pqid></control><display><type>article</type><title>The `Ideal Homunculus': decoding neural population signals</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Oram, Mike W. ; Földiák, Peter ; Perrett, David I. ; Oram, Mike W. ; Sengpiel, Frank</creator><creatorcontrib>Oram, Mike W. ; Földiák, Peter ; Perrett, David I. ; Oram, Mike W. ; Sengpiel, Frank</creatorcontrib><description>Information processing in the nervous system involves the activity of large populations of neurons. It is possible, however, to interpret the activity of relatively small numbers of cells in terms of meaningful aspects of the environment. `Bayesian inference' provides a systematic and effective method of combining information from multiple cells to accomplish this. It is not a model of a neural mechanism (neither are alternative methods, such as the population vector approach) but a tool for analysing neural signals. It does not require difficult assumptions about the nature of the dimensions underlying cell selectivity, about the distribution and tuning of cell responses or about the way in which information is transmitted and processed. It can be applied to any parameter of neural activity (for example, firing rate or temporal pattern). In this review, we demonstrate the power of Bayesian analysis using examples of visual responses of neurons in primary visual and temporal cortices. We show that interaction between correlation in mean responses to different stimuli (signal) and correlation in response variability within stimuli (noise) can lead to marked improvement of stimulus discrimination using population responses.</description><identifier>ISSN: 0166-2236</identifier><identifier>EISSN: 1878-108X</identifier><identifier>DOI: 10.1016/S0166-2236(97)01216-2</identifier><identifier>PMID: 9641539</identifier><identifier>CODEN: TNSCDR</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; bayes rule ; Bayesian analysis ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; information ; Models, Neurological ; Nervous system ; neural signal ; Neurology ; Neurons, Afferent - physiology ; population code ; population vector ; Space life sciences ; Temporal Lobe - cytology ; Temporal Lobe - physiology ; Vertebrates: nervous system and sense organs ; Visual Cortex - cytology ; Visual Cortex - physiology ; Visual Perception - physiology</subject><ispartof>Trends in neurosciences (Regular ed.), 1998-06, Vol.21 (6), p.259-265</ispartof><rights>1998 Elsevier Science Ltd</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jun 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-caa8802836975dd2599c9ebad3215be17dc51a5698330c9659f75ef2b5a475913</citedby><cites>FETCH-LOGICAL-c499t-caa8802836975dd2599c9ebad3215be17dc51a5698330c9659f75ef2b5a475913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0166-2236(97)01216-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2386850$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9641539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oram, Mike W.</creatorcontrib><creatorcontrib>Földiák, Peter</creatorcontrib><creatorcontrib>Perrett, David I.</creatorcontrib><creatorcontrib>Oram, Mike W.</creatorcontrib><creatorcontrib>Sengpiel, Frank</creatorcontrib><title>The `Ideal Homunculus': decoding neural population signals</title><title>Trends in neurosciences (Regular ed.)</title><addtitle>Trends Neurosci</addtitle><description>Information processing in the nervous system involves the activity of large populations of neurons. It is possible, however, to interpret the activity of relatively small numbers of cells in terms of meaningful aspects of the environment. `Bayesian inference' provides a systematic and effective method of combining information from multiple cells to accomplish this. It is not a model of a neural mechanism (neither are alternative methods, such as the population vector approach) but a tool for analysing neural signals. It does not require difficult assumptions about the nature of the dimensions underlying cell selectivity, about the distribution and tuning of cell responses or about the way in which information is transmitted and processed. It can be applied to any parameter of neural activity (for example, firing rate or temporal pattern). In this review, we demonstrate the power of Bayesian analysis using examples of visual responses of neurons in primary visual and temporal cortices. We show that interaction between correlation in mean responses to different stimuli (signal) and correlation in response variability within stimuli (noise) can lead to marked improvement of stimulus discrimination using population responses.</description><subject>Animals</subject><subject>bayes rule</subject><subject>Bayesian analysis</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>information</subject><subject>Models, Neurological</subject><subject>Nervous system</subject><subject>neural signal</subject><subject>Neurology</subject><subject>Neurons, Afferent - physiology</subject><subject>population code</subject><subject>population vector</subject><subject>Space life sciences</subject><subject>Temporal Lobe - cytology</subject><subject>Temporal Lobe - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Visual Cortex - cytology</subject><subject>Visual Cortex - physiology</subject><subject>Visual Perception - physiology</subject><issn>0166-2236</issn><issn>1878-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rVDEQhoModVv9CYWDiB8XRzPJyVdvRIraQsELK3gXs8mcmnL2ZJtsBP99s91lL7zpzQzD-8yQvC8hp0A_AAX58UcrsmeMy3dGvafAoE1PyAK00j1Q_espWRyQ5-S4lFtKYdAwHJEjIwcQ3CzI2fUf7H5fBnRTd5FWdfZ1quXtWRfQpxDnm27Gmpu4Tus6uU1Mc1fizeym8oI8G1vDl_t-Qn5-_XJ9ftFfff92ef75qveDMZveO6c1ZZpLo0QITBjjDS5d4AzEEkEFL8AJaTTn1BspzKgEjmwp3KCEAX5C3uzurnO6q1g2dhWLx2lyM6ZarDJGMsoeB0EOSmngDXz1H3ibat7-ybJmHzAhdIPEDvI5lZJxtOscVy7_s0DtNgH7kIDd2muNsg8JWNb2TvfH63KF4bC1t7zpr_e6K95NY3azj-WAMa6lFrRhn3YYNmv_Rsy2-IizxxAz-o0NKT7ykHv6NJ-u</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Oram, Mike W.</creator><creator>Földiák, Peter</creator><creator>Perrett, David I.</creator><creator>Oram, Mike W.</creator><creator>Sengpiel, Frank</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19980601</creationdate><title>The `Ideal Homunculus': decoding neural population signals</title><author>Oram, Mike W. ; Földiák, Peter ; Perrett, David I. ; Oram, Mike W. ; Sengpiel, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-caa8802836975dd2599c9ebad3215be17dc51a5698330c9659f75ef2b5a475913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>bayes rule</topic><topic>Bayesian analysis</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>information</topic><topic>Models, Neurological</topic><topic>Nervous system</topic><topic>neural signal</topic><topic>Neurology</topic><topic>Neurons, Afferent - physiology</topic><topic>population code</topic><topic>population vector</topic><topic>Space life sciences</topic><topic>Temporal Lobe - cytology</topic><topic>Temporal Lobe - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Visual Cortex - cytology</topic><topic>Visual Cortex - physiology</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oram, Mike W.</creatorcontrib><creatorcontrib>Földiák, Peter</creatorcontrib><creatorcontrib>Perrett, David I.</creatorcontrib><creatorcontrib>Oram, Mike W.</creatorcontrib><creatorcontrib>Sengpiel, Frank</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in neurosciences (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oram, Mike W.</au><au>Földiák, Peter</au><au>Perrett, David I.</au><au>Oram, Mike W.</au><au>Sengpiel, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The `Ideal Homunculus': decoding neural population signals</atitle><jtitle>Trends in neurosciences (Regular ed.)</jtitle><addtitle>Trends Neurosci</addtitle><date>1998-06-01</date><risdate>1998</risdate><volume>21</volume><issue>6</issue><spage>259</spage><epage>265</epage><pages>259-265</pages><issn>0166-2236</issn><eissn>1878-108X</eissn><coden>TNSCDR</coden><abstract>Information processing in the nervous system involves the activity of large populations of neurons. It is possible, however, to interpret the activity of relatively small numbers of cells in terms of meaningful aspects of the environment. `Bayesian inference' provides a systematic and effective method of combining information from multiple cells to accomplish this. It is not a model of a neural mechanism (neither are alternative methods, such as the population vector approach) but a tool for analysing neural signals. It does not require difficult assumptions about the nature of the dimensions underlying cell selectivity, about the distribution and tuning of cell responses or about the way in which information is transmitted and processed. It can be applied to any parameter of neural activity (for example, firing rate or temporal pattern). In this review, we demonstrate the power of Bayesian analysis using examples of visual responses of neurons in primary visual and temporal cortices. We show that interaction between correlation in mean responses to different stimuli (signal) and correlation in response variability within stimuli (noise) can lead to marked improvement of stimulus discrimination using population responses.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>9641539</pmid><doi>10.1016/S0166-2236(97)01216-2</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-2236 |
ispartof | Trends in neurosciences (Regular ed.), 1998-06, Vol.21 (6), p.259-265 |
issn | 0166-2236 1878-108X |
language | eng |
recordid | cdi_proquest_miscellaneous_79962021 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals bayes rule Bayesian analysis Biological and medical sciences Fundamental and applied biological sciences. Psychology General aspects. Models. Methods information Models, Neurological Nervous system neural signal Neurology Neurons, Afferent - physiology population code population vector Space life sciences Temporal Lobe - cytology Temporal Lobe - physiology Vertebrates: nervous system and sense organs Visual Cortex - cytology Visual Cortex - physiology Visual Perception - physiology |
title | The `Ideal Homunculus': decoding neural population signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20%60Ideal%20Homunculus':%20decoding%20neural%20population%20signals&rft.jtitle=Trends%20in%20neurosciences%20(Regular%20ed.)&rft.au=Oram,%20Mike%20W.&rft.date=1998-06-01&rft.volume=21&rft.issue=6&rft.spage=259&rft.epage=265&rft.pages=259-265&rft.issn=0166-2236&rft.eissn=1878-108X&rft.coden=TNSCDR&rft_id=info:doi/10.1016/S0166-2236(97)01216-2&rft_dat=%3Cproquest_cross%3E30946077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218712558&rft_id=info:pmid/9641539&rft_els_id=S0166223697012162&rfr_iscdi=true |