Measuring the Burden of Common Morbidities: Sampling Disease Experience versus Continuous Surveillance
Longitudinal prevalence, the proportion of all days of observation that a given individual manifests symptoms of illness, is a measure of disease frequency that is easy to generate from daily morbidity data and has been shown to be strongly related to subsequent health outcome. It is hypothesized th...
Gespeichert in:
Veröffentlicht in: | American journal of epidemiology 1998-06, Vol.147 (11), p.1087-1091 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1091 |
---|---|
container_issue | 11 |
container_start_page | 1087 |
container_title | American journal of epidemiology |
container_volume | 147 |
creator | Morris, Saul S. Santos, Carlos A. S. T. Barreto, Mauricio L. Cousens, Simon N. Strina, Agostino Santos, Leonor M. P. Assis, Ana Marlucia O. |
description | Longitudinal prevalence, the proportion of all days of observation that a given individual manifests symptoms of illness, is a measure of disease frequency that is easy to generate from daily morbidity data and has been shown to be strongly related to subsequent health outcome. It is hypothesized that this measure could be derived using a representative sample of days of observation rather than continuous surveillance. The authors use 1990–1991 data from a Brazilian supplementation trial comprising a year's daily records of the occurrence of diarrhea, fever, and cough in 906 children under 5 years of age to examine how many days of morbidity data need to be observed to rank subjects into quintiles of illness frequency. Systematic samples of the full data set, based on every 2nd, 3rd, 5th, 10th, 15th, 20th, and 30th day of data, are compared with the continuous record. For diarrhea and fever, estimates based on less than 72 days of observation result in over one fourth of individuals who should have been in the extreme quintiles of the morbidity distribution being misclassified, and over one fifth of all subjects appear (falsely) to suffer no morbidity. Estimates of longitudinal prevalence should be based on at least 72 days of observation. Am J Epidemiol 1998;147:1081–6. |
doi_str_mv | 10.1093/oxfordjournals.aje.a009403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79920360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79920360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-d349a88d3df5b9824a9d2a910baae8f1ef3a1afe2cfab262ae6731cc64bb97593</originalsourceid><addsrcrecordid>eNpVkF1v0zAUhi0EGmXwE5AihHaXcmzno94dK2Ob1A2kAaq4sU6SY3BJ4mInU_fv56pRpV3Z0vu89jkPYx84zDko-cntjPPNxo2-xzbMcUNzBFAZyBdsxrOySAuRFy_ZDABEqkQhXrM3IWwAOFc5nLATVQiAXM6YuSUMo7f9n2T4S8nF6BvqE2eSpes61ye3zle2sYOlcJ7cY7dt9-gXG2KNksvdlrylvqbkgXwYQ6z1g-1HF6_3o38g27YY47fslYmj0rvpPGU_v17-WF6nq29XN8vPq7TOpBzSRmYKF4tGNiav1EJkqBqBikOFSAvDyUjkaEjUBqu4FlJRSl7XRVZVqsyVPGVnh3e33v0fKQy6s6Gm_RAUZ9KlUgJkARE8P4C1dyF4MnrrbYf-UXPQe8n6uWQdJetJciy_n34Zq46aY3WyGvOPU46hxtb4qMCGIyZELnJZRCw9YDYMtDvG6P_puFaZ6-v1b72--PX9bg0rDfIJq3-dqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79920360</pqid></control><display><type>article</type><title>Measuring the Burden of Common Morbidities: Sampling Disease Experience versus Continuous Surveillance</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Morris, Saul S. ; Santos, Carlos A. S. T. ; Barreto, Mauricio L. ; Cousens, Simon N. ; Strina, Agostino ; Santos, Leonor M. P. ; Assis, Ana Marlucia O.</creator><creatorcontrib>Morris, Saul S. ; Santos, Carlos A. S. T. ; Barreto, Mauricio L. ; Cousens, Simon N. ; Strina, Agostino ; Santos, Leonor M. P. ; Assis, Ana Marlucia O.</creatorcontrib><description>Longitudinal prevalence, the proportion of all days of observation that a given individual manifests symptoms of illness, is a measure of disease frequency that is easy to generate from daily morbidity data and has been shown to be strongly related to subsequent health outcome. It is hypothesized that this measure could be derived using a representative sample of days of observation rather than continuous surveillance. The authors use 1990–1991 data from a Brazilian supplementation trial comprising a year's daily records of the occurrence of diarrhea, fever, and cough in 906 children under 5 years of age to examine how many days of morbidity data need to be observed to rank subjects into quintiles of illness frequency. Systematic samples of the full data set, based on every 2nd, 3rd, 5th, 10th, 15th, 20th, and 30th day of data, are compared with the continuous record. For diarrhea and fever, estimates based on less than 72 days of observation result in over one fourth of individuals who should have been in the extreme quintiles of the morbidity distribution being misclassified, and over one fifth of all subjects appear (falsely) to suffer no morbidity. Estimates of longitudinal prevalence should be based on at least 72 days of observation. Am J Epidemiol 1998;147:1081–6.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/oxfordjournals.aje.a009403</identifier><identifier>PMID: 9620053</identifier><identifier>CODEN: AJEPAS</identifier><language>eng</language><publisher>Cary, NC: Oxford University Press</publisher><subject>Analysis. Health state ; Biological and medical sciences ; Brazil - epidemiology ; child ; Child, Preschool ; cough ; Cough - epidemiology ; Data Collection ; diarrhea ; Diarrhea, Infantile - epidemiology ; Epidemiology ; fever ; Fever - epidemiology ; General aspects ; Humans ; Infant ; Medical sciences ; Morbidity ; Population Surveillance ; Prevalence ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Time Factors</subject><ispartof>American journal of epidemiology, 1998-06, Vol.147 (11), p.1087-1091</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-d349a88d3df5b9824a9d2a910baae8f1ef3a1afe2cfab262ae6731cc64bb97593</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2252536$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9620053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, Saul S.</creatorcontrib><creatorcontrib>Santos, Carlos A. S. T.</creatorcontrib><creatorcontrib>Barreto, Mauricio L.</creatorcontrib><creatorcontrib>Cousens, Simon N.</creatorcontrib><creatorcontrib>Strina, Agostino</creatorcontrib><creatorcontrib>Santos, Leonor M. P.</creatorcontrib><creatorcontrib>Assis, Ana Marlucia O.</creatorcontrib><title>Measuring the Burden of Common Morbidities: Sampling Disease Experience versus Continuous Surveillance</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Longitudinal prevalence, the proportion of all days of observation that a given individual manifests symptoms of illness, is a measure of disease frequency that is easy to generate from daily morbidity data and has been shown to be strongly related to subsequent health outcome. It is hypothesized that this measure could be derived using a representative sample of days of observation rather than continuous surveillance. The authors use 1990–1991 data from a Brazilian supplementation trial comprising a year's daily records of the occurrence of diarrhea, fever, and cough in 906 children under 5 years of age to examine how many days of morbidity data need to be observed to rank subjects into quintiles of illness frequency. Systematic samples of the full data set, based on every 2nd, 3rd, 5th, 10th, 15th, 20th, and 30th day of data, are compared with the continuous record. For diarrhea and fever, estimates based on less than 72 days of observation result in over one fourth of individuals who should have been in the extreme quintiles of the morbidity distribution being misclassified, and over one fifth of all subjects appear (falsely) to suffer no morbidity. Estimates of longitudinal prevalence should be based on at least 72 days of observation. Am J Epidemiol 1998;147:1081–6.</description><subject>Analysis. Health state</subject><subject>Biological and medical sciences</subject><subject>Brazil - epidemiology</subject><subject>child</subject><subject>Child, Preschool</subject><subject>cough</subject><subject>Cough - epidemiology</subject><subject>Data Collection</subject><subject>diarrhea</subject><subject>Diarrhea, Infantile - epidemiology</subject><subject>Epidemiology</subject><subject>fever</subject><subject>Fever - epidemiology</subject><subject>General aspects</subject><subject>Humans</subject><subject>Infant</subject><subject>Medical sciences</subject><subject>Morbidity</subject><subject>Population Surveillance</subject><subject>Prevalence</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Time Factors</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkF1v0zAUhi0EGmXwE5AihHaXcmzno94dK2Ob1A2kAaq4sU6SY3BJ4mInU_fv56pRpV3Z0vu89jkPYx84zDko-cntjPPNxo2-xzbMcUNzBFAZyBdsxrOySAuRFy_ZDABEqkQhXrM3IWwAOFc5nLATVQiAXM6YuSUMo7f9n2T4S8nF6BvqE2eSpes61ye3zle2sYOlcJ7cY7dt9-gXG2KNksvdlrylvqbkgXwYQ6z1g-1HF6_3o38g27YY47fslYmj0rvpPGU_v17-WF6nq29XN8vPq7TOpBzSRmYKF4tGNiav1EJkqBqBikOFSAvDyUjkaEjUBqu4FlJRSl7XRVZVqsyVPGVnh3e33v0fKQy6s6Gm_RAUZ9KlUgJkARE8P4C1dyF4MnrrbYf-UXPQe8n6uWQdJetJciy_n34Zq46aY3WyGvOPU46hxtb4qMCGIyZELnJZRCw9YDYMtDvG6P_puFaZ6-v1b72--PX9bg0rDfIJq3-dqg</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Morris, Saul S.</creator><creator>Santos, Carlos A. S. T.</creator><creator>Barreto, Mauricio L.</creator><creator>Cousens, Simon N.</creator><creator>Strina, Agostino</creator><creator>Santos, Leonor M. P.</creator><creator>Assis, Ana Marlucia O.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980601</creationdate><title>Measuring the Burden of Common Morbidities: Sampling Disease Experience versus Continuous Surveillance</title><author>Morris, Saul S. ; Santos, Carlos A. S. T. ; Barreto, Mauricio L. ; Cousens, Simon N. ; Strina, Agostino ; Santos, Leonor M. P. ; Assis, Ana Marlucia O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-d349a88d3df5b9824a9d2a910baae8f1ef3a1afe2cfab262ae6731cc64bb97593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Analysis. Health state</topic><topic>Biological and medical sciences</topic><topic>Brazil - epidemiology</topic><topic>child</topic><topic>Child, Preschool</topic><topic>cough</topic><topic>Cough - epidemiology</topic><topic>Data Collection</topic><topic>diarrhea</topic><topic>Diarrhea, Infantile - epidemiology</topic><topic>Epidemiology</topic><topic>fever</topic><topic>Fever - epidemiology</topic><topic>General aspects</topic><topic>Humans</topic><topic>Infant</topic><topic>Medical sciences</topic><topic>Morbidity</topic><topic>Population Surveillance</topic><topic>Prevalence</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Saul S.</creatorcontrib><creatorcontrib>Santos, Carlos A. S. T.</creatorcontrib><creatorcontrib>Barreto, Mauricio L.</creatorcontrib><creatorcontrib>Cousens, Simon N.</creatorcontrib><creatorcontrib>Strina, Agostino</creatorcontrib><creatorcontrib>Santos, Leonor M. P.</creatorcontrib><creatorcontrib>Assis, Ana Marlucia O.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Saul S.</au><au>Santos, Carlos A. S. T.</au><au>Barreto, Mauricio L.</au><au>Cousens, Simon N.</au><au>Strina, Agostino</au><au>Santos, Leonor M. P.</au><au>Assis, Ana Marlucia O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the Burden of Common Morbidities: Sampling Disease Experience versus Continuous Surveillance</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>1998-06-01</date><risdate>1998</risdate><volume>147</volume><issue>11</issue><spage>1087</spage><epage>1091</epage><pages>1087-1091</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><coden>AJEPAS</coden><abstract>Longitudinal prevalence, the proportion of all days of observation that a given individual manifests symptoms of illness, is a measure of disease frequency that is easy to generate from daily morbidity data and has been shown to be strongly related to subsequent health outcome. It is hypothesized that this measure could be derived using a representative sample of days of observation rather than continuous surveillance. The authors use 1990–1991 data from a Brazilian supplementation trial comprising a year's daily records of the occurrence of diarrhea, fever, and cough in 906 children under 5 years of age to examine how many days of morbidity data need to be observed to rank subjects into quintiles of illness frequency. Systematic samples of the full data set, based on every 2nd, 3rd, 5th, 10th, 15th, 20th, and 30th day of data, are compared with the continuous record. For diarrhea and fever, estimates based on less than 72 days of observation result in over one fourth of individuals who should have been in the extreme quintiles of the morbidity distribution being misclassified, and over one fifth of all subjects appear (falsely) to suffer no morbidity. Estimates of longitudinal prevalence should be based on at least 72 days of observation. Am J Epidemiol 1998;147:1081–6.</abstract><cop>Cary, NC</cop><pub>Oxford University Press</pub><pmid>9620053</pmid><doi>10.1093/oxfordjournals.aje.a009403</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9262 |
ispartof | American journal of epidemiology, 1998-06, Vol.147 (11), p.1087-1091 |
issn | 0002-9262 1476-6256 |
language | eng |
recordid | cdi_proquest_miscellaneous_79920360 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Analysis. Health state Biological and medical sciences Brazil - epidemiology child Child, Preschool cough Cough - epidemiology Data Collection diarrhea Diarrhea, Infantile - epidemiology Epidemiology fever Fever - epidemiology General aspects Humans Infant Medical sciences Morbidity Population Surveillance Prevalence Public health. Hygiene Public health. Hygiene-occupational medicine Time Factors |
title | Measuring the Burden of Common Morbidities: Sampling Disease Experience versus Continuous Surveillance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20Burden%20of%20Common%20Morbidities:%20Sampling%20Disease%20Experience%20versus%20Continuous%20Surveillance&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=Morris,%20Saul%20S.&rft.date=1998-06-01&rft.volume=147&rft.issue=11&rft.spage=1087&rft.epage=1091&rft.pages=1087-1091&rft.issn=0002-9262&rft.eissn=1476-6256&rft.coden=AJEPAS&rft_id=info:doi/10.1093/oxfordjournals.aje.a009403&rft_dat=%3Cproquest_cross%3E79920360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79920360&rft_id=info:pmid/9620053&rfr_iscdi=true |