Measuring the Burden of Common Morbidities: Sampling Disease Experience versus Continuous Surveillance

Longitudinal prevalence, the proportion of all days of observation that a given individual manifests symptoms of illness, is a measure of disease frequency that is easy to generate from daily morbidity data and has been shown to be strongly related to subsequent health outcome. It is hypothesized th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of epidemiology 1998-06, Vol.147 (11), p.1087-1091
Hauptverfasser: Morris, Saul S., Santos, Carlos A. S. T., Barreto, Mauricio L., Cousens, Simon N., Strina, Agostino, Santos, Leonor M. P., Assis, Ana Marlucia O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1091
container_issue 11
container_start_page 1087
container_title American journal of epidemiology
container_volume 147
creator Morris, Saul S.
Santos, Carlos A. S. T.
Barreto, Mauricio L.
Cousens, Simon N.
Strina, Agostino
Santos, Leonor M. P.
Assis, Ana Marlucia O.
description Longitudinal prevalence, the proportion of all days of observation that a given individual manifests symptoms of illness, is a measure of disease frequency that is easy to generate from daily morbidity data and has been shown to be strongly related to subsequent health outcome. It is hypothesized that this measure could be derived using a representative sample of days of observation rather than continuous surveillance. The authors use 1990–1991 data from a Brazilian supplementation trial comprising a year's daily records of the occurrence of diarrhea, fever, and cough in 906 children under 5 years of age to examine how many days of morbidity data need to be observed to rank subjects into quintiles of illness frequency. Systematic samples of the full data set, based on every 2nd, 3rd, 5th, 10th, 15th, 20th, and 30th day of data, are compared with the continuous record. For diarrhea and fever, estimates based on less than 72 days of observation result in over one fourth of individuals who should have been in the extreme quintiles of the morbidity distribution being misclassified, and over one fifth of all subjects appear (falsely) to suffer no morbidity. Estimates of longitudinal prevalence should be based on at least 72 days of observation. Am J Epidemiol 1998;147:1081–6.
doi_str_mv 10.1093/oxfordjournals.aje.a009403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79920360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79920360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-d349a88d3df5b9824a9d2a910baae8f1ef3a1afe2cfab262ae6731cc64bb97593</originalsourceid><addsrcrecordid>eNpVkF1v0zAUhi0EGmXwE5AihHaXcmzno94dK2Ob1A2kAaq4sU6SY3BJ4mInU_fv56pRpV3Z0vu89jkPYx84zDko-cntjPPNxo2-xzbMcUNzBFAZyBdsxrOySAuRFy_ZDABEqkQhXrM3IWwAOFc5nLATVQiAXM6YuSUMo7f9n2T4S8nF6BvqE2eSpes61ye3zle2sYOlcJ7cY7dt9-gXG2KNksvdlrylvqbkgXwYQ6z1g-1HF6_3o38g27YY47fslYmj0rvpPGU_v17-WF6nq29XN8vPq7TOpBzSRmYKF4tGNiav1EJkqBqBikOFSAvDyUjkaEjUBqu4FlJRSl7XRVZVqsyVPGVnh3e33v0fKQy6s6Gm_RAUZ9KlUgJkARE8P4C1dyF4MnrrbYf-UXPQe8n6uWQdJetJciy_n34Zq46aY3WyGvOPU46hxtb4qMCGIyZELnJZRCw9YDYMtDvG6P_puFaZ6-v1b72--PX9bg0rDfIJq3-dqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79920360</pqid></control><display><type>article</type><title>Measuring the Burden of Common Morbidities: Sampling Disease Experience versus Continuous Surveillance</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Morris, Saul S. ; Santos, Carlos A. S. T. ; Barreto, Mauricio L. ; Cousens, Simon N. ; Strina, Agostino ; Santos, Leonor M. P. ; Assis, Ana Marlucia O.</creator><creatorcontrib>Morris, Saul S. ; Santos, Carlos A. S. T. ; Barreto, Mauricio L. ; Cousens, Simon N. ; Strina, Agostino ; Santos, Leonor M. P. ; Assis, Ana Marlucia O.</creatorcontrib><description>Longitudinal prevalence, the proportion of all days of observation that a given individual manifests symptoms of illness, is a measure of disease frequency that is easy to generate from daily morbidity data and has been shown to be strongly related to subsequent health outcome. It is hypothesized that this measure could be derived using a representative sample of days of observation rather than continuous surveillance. The authors use 1990–1991 data from a Brazilian supplementation trial comprising a year's daily records of the occurrence of diarrhea, fever, and cough in 906 children under 5 years of age to examine how many days of morbidity data need to be observed to rank subjects into quintiles of illness frequency. Systematic samples of the full data set, based on every 2nd, 3rd, 5th, 10th, 15th, 20th, and 30th day of data, are compared with the continuous record. For diarrhea and fever, estimates based on less than 72 days of observation result in over one fourth of individuals who should have been in the extreme quintiles of the morbidity distribution being misclassified, and over one fifth of all subjects appear (falsely) to suffer no morbidity. Estimates of longitudinal prevalence should be based on at least 72 days of observation. Am J Epidemiol 1998;147:1081–6.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/oxfordjournals.aje.a009403</identifier><identifier>PMID: 9620053</identifier><identifier>CODEN: AJEPAS</identifier><language>eng</language><publisher>Cary, NC: Oxford University Press</publisher><subject>Analysis. Health state ; Biological and medical sciences ; Brazil - epidemiology ; child ; Child, Preschool ; cough ; Cough - epidemiology ; Data Collection ; diarrhea ; Diarrhea, Infantile - epidemiology ; Epidemiology ; fever ; Fever - epidemiology ; General aspects ; Humans ; Infant ; Medical sciences ; Morbidity ; Population Surveillance ; Prevalence ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Time Factors</subject><ispartof>American journal of epidemiology, 1998-06, Vol.147 (11), p.1087-1091</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-d349a88d3df5b9824a9d2a910baae8f1ef3a1afe2cfab262ae6731cc64bb97593</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2252536$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9620053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, Saul S.</creatorcontrib><creatorcontrib>Santos, Carlos A. S. T.</creatorcontrib><creatorcontrib>Barreto, Mauricio L.</creatorcontrib><creatorcontrib>Cousens, Simon N.</creatorcontrib><creatorcontrib>Strina, Agostino</creatorcontrib><creatorcontrib>Santos, Leonor M. P.</creatorcontrib><creatorcontrib>Assis, Ana Marlucia O.</creatorcontrib><title>Measuring the Burden of Common Morbidities: Sampling Disease Experience versus Continuous Surveillance</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Longitudinal prevalence, the proportion of all days of observation that a given individual manifests symptoms of illness, is a measure of disease frequency that is easy to generate from daily morbidity data and has been shown to be strongly related to subsequent health outcome. It is hypothesized that this measure could be derived using a representative sample of days of observation rather than continuous surveillance. The authors use 1990–1991 data from a Brazilian supplementation trial comprising a year's daily records of the occurrence of diarrhea, fever, and cough in 906 children under 5 years of age to examine how many days of morbidity data need to be observed to rank subjects into quintiles of illness frequency. Systematic samples of the full data set, based on every 2nd, 3rd, 5th, 10th, 15th, 20th, and 30th day of data, are compared with the continuous record. For diarrhea and fever, estimates based on less than 72 days of observation result in over one fourth of individuals who should have been in the extreme quintiles of the morbidity distribution being misclassified, and over one fifth of all subjects appear (falsely) to suffer no morbidity. Estimates of longitudinal prevalence should be based on at least 72 days of observation. Am J Epidemiol 1998;147:1081–6.</description><subject>Analysis. Health state</subject><subject>Biological and medical sciences</subject><subject>Brazil - epidemiology</subject><subject>child</subject><subject>Child, Preschool</subject><subject>cough</subject><subject>Cough - epidemiology</subject><subject>Data Collection</subject><subject>diarrhea</subject><subject>Diarrhea, Infantile - epidemiology</subject><subject>Epidemiology</subject><subject>fever</subject><subject>Fever - epidemiology</subject><subject>General aspects</subject><subject>Humans</subject><subject>Infant</subject><subject>Medical sciences</subject><subject>Morbidity</subject><subject>Population Surveillance</subject><subject>Prevalence</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Time Factors</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkF1v0zAUhi0EGmXwE5AihHaXcmzno94dK2Ob1A2kAaq4sU6SY3BJ4mInU_fv56pRpV3Z0vu89jkPYx84zDko-cntjPPNxo2-xzbMcUNzBFAZyBdsxrOySAuRFy_ZDABEqkQhXrM3IWwAOFc5nLATVQiAXM6YuSUMo7f9n2T4S8nF6BvqE2eSpes61ye3zle2sYOlcJ7cY7dt9-gXG2KNksvdlrylvqbkgXwYQ6z1g-1HF6_3o38g27YY47fslYmj0rvpPGU_v17-WF6nq29XN8vPq7TOpBzSRmYKF4tGNiav1EJkqBqBikOFSAvDyUjkaEjUBqu4FlJRSl7XRVZVqsyVPGVnh3e33v0fKQy6s6Gm_RAUZ9KlUgJkARE8P4C1dyF4MnrrbYf-UXPQe8n6uWQdJetJciy_n34Zq46aY3WyGvOPU46hxtb4qMCGIyZELnJZRCw9YDYMtDvG6P_puFaZ6-v1b72--PX9bg0rDfIJq3-dqg</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Morris, Saul S.</creator><creator>Santos, Carlos A. S. T.</creator><creator>Barreto, Mauricio L.</creator><creator>Cousens, Simon N.</creator><creator>Strina, Agostino</creator><creator>Santos, Leonor M. P.</creator><creator>Assis, Ana Marlucia O.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980601</creationdate><title>Measuring the Burden of Common Morbidities: Sampling Disease Experience versus Continuous Surveillance</title><author>Morris, Saul S. ; Santos, Carlos A. S. T. ; Barreto, Mauricio L. ; Cousens, Simon N. ; Strina, Agostino ; Santos, Leonor M. P. ; Assis, Ana Marlucia O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-d349a88d3df5b9824a9d2a910baae8f1ef3a1afe2cfab262ae6731cc64bb97593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Analysis. Health state</topic><topic>Biological and medical sciences</topic><topic>Brazil - epidemiology</topic><topic>child</topic><topic>Child, Preschool</topic><topic>cough</topic><topic>Cough - epidemiology</topic><topic>Data Collection</topic><topic>diarrhea</topic><topic>Diarrhea, Infantile - epidemiology</topic><topic>Epidemiology</topic><topic>fever</topic><topic>Fever - epidemiology</topic><topic>General aspects</topic><topic>Humans</topic><topic>Infant</topic><topic>Medical sciences</topic><topic>Morbidity</topic><topic>Population Surveillance</topic><topic>Prevalence</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, Saul S.</creatorcontrib><creatorcontrib>Santos, Carlos A. S. T.</creatorcontrib><creatorcontrib>Barreto, Mauricio L.</creatorcontrib><creatorcontrib>Cousens, Simon N.</creatorcontrib><creatorcontrib>Strina, Agostino</creatorcontrib><creatorcontrib>Santos, Leonor M. P.</creatorcontrib><creatorcontrib>Assis, Ana Marlucia O.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, Saul S.</au><au>Santos, Carlos A. S. T.</au><au>Barreto, Mauricio L.</au><au>Cousens, Simon N.</au><au>Strina, Agostino</au><au>Santos, Leonor M. P.</au><au>Assis, Ana Marlucia O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the Burden of Common Morbidities: Sampling Disease Experience versus Continuous Surveillance</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>1998-06-01</date><risdate>1998</risdate><volume>147</volume><issue>11</issue><spage>1087</spage><epage>1091</epage><pages>1087-1091</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><coden>AJEPAS</coden><abstract>Longitudinal prevalence, the proportion of all days of observation that a given individual manifests symptoms of illness, is a measure of disease frequency that is easy to generate from daily morbidity data and has been shown to be strongly related to subsequent health outcome. It is hypothesized that this measure could be derived using a representative sample of days of observation rather than continuous surveillance. The authors use 1990–1991 data from a Brazilian supplementation trial comprising a year's daily records of the occurrence of diarrhea, fever, and cough in 906 children under 5 years of age to examine how many days of morbidity data need to be observed to rank subjects into quintiles of illness frequency. Systematic samples of the full data set, based on every 2nd, 3rd, 5th, 10th, 15th, 20th, and 30th day of data, are compared with the continuous record. For diarrhea and fever, estimates based on less than 72 days of observation result in over one fourth of individuals who should have been in the extreme quintiles of the morbidity distribution being misclassified, and over one fifth of all subjects appear (falsely) to suffer no morbidity. Estimates of longitudinal prevalence should be based on at least 72 days of observation. Am J Epidemiol 1998;147:1081–6.</abstract><cop>Cary, NC</cop><pub>Oxford University Press</pub><pmid>9620053</pmid><doi>10.1093/oxfordjournals.aje.a009403</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9262
ispartof American journal of epidemiology, 1998-06, Vol.147 (11), p.1087-1091
issn 0002-9262
1476-6256
language eng
recordid cdi_proquest_miscellaneous_79920360
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Analysis. Health state
Biological and medical sciences
Brazil - epidemiology
child
Child, Preschool
cough
Cough - epidemiology
Data Collection
diarrhea
Diarrhea, Infantile - epidemiology
Epidemiology
fever
Fever - epidemiology
General aspects
Humans
Infant
Medical sciences
Morbidity
Population Surveillance
Prevalence
Public health. Hygiene
Public health. Hygiene-occupational medicine
Time Factors
title Measuring the Burden of Common Morbidities: Sampling Disease Experience versus Continuous Surveillance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A24%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20Burden%20of%20Common%20Morbidities:%20Sampling%20Disease%20Experience%20versus%20Continuous%20Surveillance&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=Morris,%20Saul%20S.&rft.date=1998-06-01&rft.volume=147&rft.issue=11&rft.spage=1087&rft.epage=1091&rft.pages=1087-1091&rft.issn=0002-9262&rft.eissn=1476-6256&rft.coden=AJEPAS&rft_id=info:doi/10.1093/oxfordjournals.aje.a009403&rft_dat=%3Cproquest_cross%3E79920360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79920360&rft_id=info:pmid/9620053&rfr_iscdi=true