Dynamic model of airway pressure drop
A multipath model of the mechanical behaviour of healthy lungs subject to a plethysmographic test (close to quiet breathing conditions) has been developed, which includes the main physiological nonlinearities. This model is built on a symmetric branching scheme based on Weibel's data, and uses...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 1998, Vol.36 (1), p.101-106 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | 1 |
container_start_page | 101 |
container_title | Medical & biological engineering & computing |
container_volume | 36 |
creator | RENOTTE, C REMY, M SAUCEZ, P |
description | A multipath model of the mechanical behaviour of healthy lungs subject to a plethysmographic test (close to quiet breathing conditions) has been developed, which includes the main physiological nonlinearities. This model is built on a symmetric branching scheme based on Weibel's data, and uses non-linear fluid equations for the upper and lower airways. The alveolar gas compression, the changes in airway dimensions related to lung volume and/or transmural pressure, and the respiratory swings in glottic aperture have been taken into account. As clinically observed, the behaviour of the lungs, taken as a whole, seems linear, but it is confirmed by simulation that this linearity is only apparent. Simplifications and linearisations therefore need to be made carefully, only after their impact on the global behaviour of the lung is evaluated. |
doi_str_mv | 10.1007/BF02522865 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79914847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090133521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-c95a3ce685c6bacb6d22c46d83a59dac838c85bed52d03322e55d9968d892c623</originalsourceid><addsrcrecordid>eNqF0ctLxDAQBvAgyro-Lt6FIj5AqM6kSZocdXVVWPCi55ImKXTpy2SL7H9vZcsKHvQ0h-_HBzNDyAnCDQKkt_dzoJxSKfgOmWLKMAbG2C6ZAjKIAVHuk4MQlgAUOWUTMlECWcrFlFw8rBtdlyaqW-uqqC0iXfpPvY4670LovYusb7sjslfoKrjjcR6S9_nj2-w5Xrw-vczuFrFhgKvYKK4T44TkRuTa5MJSapiwMtFcWW1kIo3kubOcWkgSSh3nVikhrVTUCJockstNb-fbj96FVVaXwbiq0o1r-5ClSiGTLB3g1d-QMylBYvpvJcUEGRc4wLNfcNn2vhnWzYRIkDJEGND1BhnfhuBdkXW-rLVfZwjZ9y-yn18M-HRs7PPa2S0djz_k52Oug9FV4XVjyrBlFAWD4Uxfj46Mtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>663124110</pqid></control><display><type>article</type><title>Dynamic model of airway pressure drop</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>RENOTTE, C ; REMY, M ; SAUCEZ, P</creator><creatorcontrib>RENOTTE, C ; REMY, M ; SAUCEZ, P</creatorcontrib><description>A multipath model of the mechanical behaviour of healthy lungs subject to a plethysmographic test (close to quiet breathing conditions) has been developed, which includes the main physiological nonlinearities. This model is built on a symmetric branching scheme based on Weibel's data, and uses non-linear fluid equations for the upper and lower airways. The alveolar gas compression, the changes in airway dimensions related to lung volume and/or transmural pressure, and the respiratory swings in glottic aperture have been taken into account. As clinically observed, the behaviour of the lungs, taken as a whole, seems linear, but it is confirmed by simulation that this linearity is only apparent. Simplifications and linearisations therefore need to be made carefully, only after their impact on the global behaviour of the lung is evaluated.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/BF02522865</identifier><identifier>PMID: 9614756</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Air breathing ; Biological and medical sciences ; Computational Biology ; Fundamental and applied biological sciences. Psychology ; Humans ; Linearization ; Lungs ; Mathematical models ; Models, Biological ; Plethysmography ; Pressure drop ; Respiratory Mechanics ; Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics ; Vertebrates: respiratory system</subject><ispartof>Medical & biological engineering & computing, 1998, Vol.36 (1), p.101-106</ispartof><rights>1998 INIST-CNRS</rights><rights>IFMBE 1994</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-c95a3ce685c6bacb6d22c46d83a59dac838c85bed52d03322e55d9968d892c623</citedby><cites>FETCH-LOGICAL-c401t-c95a3ce685c6bacb6d22c46d83a59dac838c85bed52d03322e55d9968d892c623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27906,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2164003$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9614756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>RENOTTE, C</creatorcontrib><creatorcontrib>REMY, M</creatorcontrib><creatorcontrib>SAUCEZ, P</creatorcontrib><title>Dynamic model of airway pressure drop</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><description>A multipath model of the mechanical behaviour of healthy lungs subject to a plethysmographic test (close to quiet breathing conditions) has been developed, which includes the main physiological nonlinearities. This model is built on a symmetric branching scheme based on Weibel's data, and uses non-linear fluid equations for the upper and lower airways. The alveolar gas compression, the changes in airway dimensions related to lung volume and/or transmural pressure, and the respiratory swings in glottic aperture have been taken into account. As clinically observed, the behaviour of the lungs, taken as a whole, seems linear, but it is confirmed by simulation that this linearity is only apparent. Simplifications and linearisations therefore need to be made carefully, only after their impact on the global behaviour of the lung is evaluated.</description><subject>Air breathing</subject><subject>Biological and medical sciences</subject><subject>Computational Biology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Linearization</subject><subject>Lungs</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Plethysmography</subject><subject>Pressure drop</subject><subject>Respiratory Mechanics</subject><subject>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</subject><subject>Vertebrates: respiratory system</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0ctLxDAQBvAgyro-Lt6FIj5AqM6kSZocdXVVWPCi55ImKXTpy2SL7H9vZcsKHvQ0h-_HBzNDyAnCDQKkt_dzoJxSKfgOmWLKMAbG2C6ZAjKIAVHuk4MQlgAUOWUTMlECWcrFlFw8rBtdlyaqW-uqqC0iXfpPvY4670LovYusb7sjslfoKrjjcR6S9_nj2-w5Xrw-vczuFrFhgKvYKK4T44TkRuTa5MJSapiwMtFcWW1kIo3kubOcWkgSSh3nVikhrVTUCJockstNb-fbj96FVVaXwbiq0o1r-5ClSiGTLB3g1d-QMylBYvpvJcUEGRc4wLNfcNn2vhnWzYRIkDJEGND1BhnfhuBdkXW-rLVfZwjZ9y-yn18M-HRs7PPa2S0djz_k52Oug9FV4XVjyrBlFAWD4Uxfj46Mtw</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>RENOTTE, C</creator><creator>REMY, M</creator><creator>SAUCEZ, P</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>1998</creationdate><title>Dynamic model of airway pressure drop</title><author>RENOTTE, C ; REMY, M ; SAUCEZ, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-c95a3ce685c6bacb6d22c46d83a59dac838c85bed52d03322e55d9968d892c623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Air breathing</topic><topic>Biological and medical sciences</topic><topic>Computational Biology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Linearization</topic><topic>Lungs</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Plethysmography</topic><topic>Pressure drop</topic><topic>Respiratory Mechanics</topic><topic>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</topic><topic>Vertebrates: respiratory system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RENOTTE, C</creatorcontrib><creatorcontrib>REMY, M</creatorcontrib><creatorcontrib>SAUCEZ, P</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RENOTTE, C</au><au>REMY, M</au><au>SAUCEZ, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic model of airway pressure drop</atitle><jtitle>Medical & biological engineering & computing</jtitle><addtitle>Med Biol Eng Comput</addtitle><date>1998</date><risdate>1998</risdate><volume>36</volume><issue>1</issue><spage>101</spage><epage>106</epage><pages>101-106</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>A multipath model of the mechanical behaviour of healthy lungs subject to a plethysmographic test (close to quiet breathing conditions) has been developed, which includes the main physiological nonlinearities. This model is built on a symmetric branching scheme based on Weibel's data, and uses non-linear fluid equations for the upper and lower airways. The alveolar gas compression, the changes in airway dimensions related to lung volume and/or transmural pressure, and the respiratory swings in glottic aperture have been taken into account. As clinically observed, the behaviour of the lungs, taken as a whole, seems linear, but it is confirmed by simulation that this linearity is only apparent. Simplifications and linearisations therefore need to be made carefully, only after their impact on the global behaviour of the lung is evaluated.</abstract><cop>Heidelberg</cop><pub>Springer</pub><pmid>9614756</pmid><doi>10.1007/BF02522865</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 1998, Vol.36 (1), p.101-106 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_79914847 |
source | MEDLINE; SpringerLink Journals |
subjects | Air breathing Biological and medical sciences Computational Biology Fundamental and applied biological sciences. Psychology Humans Linearization Lungs Mathematical models Models, Biological Plethysmography Pressure drop Respiratory Mechanics Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics Vertebrates: respiratory system |
title | Dynamic model of airway pressure drop |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20model%20of%20airway%20pressure%20drop&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=RENOTTE,%20C&rft.date=1998&rft.volume=36&rft.issue=1&rft.spage=101&rft.epage=106&rft.pages=101-106&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/BF02522865&rft_dat=%3Cproquest_cross%3E2090133521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=663124110&rft_id=info:pmid/9614756&rfr_iscdi=true |