Mathematical model of the lower extremity joint reaction forces using Kane's method of dynamics

This report describes a new mathematical model for defining the joint reaction forces of the lower extremity using Kane's method of dynamics. Our model utilized average lower extremity joint motion and force/plate data from one healthy female patient during gait. From a cadaver specimen, the an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 1998-02, Vol.31 (2), p.185-189
Hauptverfasser: Komistek, R D, Stiehl, J B, Dennis, D A, Paxson, R D, Soutas-Little, R W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue 2
container_start_page 185
container_title Journal of biomechanics
container_volume 31
creator Komistek, R D
Stiehl, J B
Dennis, D A
Paxson, R D
Soutas-Little, R W
description This report describes a new mathematical model for defining the joint reaction forces of the lower extremity using Kane's method of dynamics. Our model utilized average lower extremity joint motion and force/plate data from one healthy female patient during gait. From a cadaver specimen, the anatomical mass centers of the pelvis, femur, tibia, and foot were determined. Joint angular motion during the normal gait cycle was computed using Cardan angles for each distal segment relative to the proximal segment. Fluoroscopy of four normal knees determined average femorotibial and patellofemoral contact positions throughout flexion. A three-dimensional model of the lower extremity was defined in weight-bearing motion by 30 differential equations. During normal walking, the joint reaction forces for the subject tested ranged from 1.9 to 2.6 times body weight at the hip joint and 1.7-2.3 times body weight at the knee joint, depending primarily on gait speed. The method correlates well with known in vivo telemetrically measured forces at the hip joint.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_79889357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>361329</sourcerecordid><originalsourceid>FETCH-LOGICAL-p169t-46888d89b8a2b4728a756a3b73b76e0e84a4a2851babaa9dea34ead61131f7423</originalsourceid><addsrcrecordid>eNqFkE1LxDAYhHNQ1nX1Jwg56amQrzbJURa_cMWLnsvb9q2bpWnWJEX331tx78LAwPAwDHNClowJXlhh2Rk5T2nHGNNK2wVZ2NJKwdWS1C-Qt-ghuxYG6kOHAw09nTM6hC-MFL9zRO_yge6CGzONCG12YaR9iC0mOiU3ftBnGPEmUY95G7rfgu4wgndtuiCnPQwJL4--Iu_3d2_rx2Lz-vC0vt0Ue17ZXKjKGNMZ2xgQjdLCgC4rkI2eVSFDo0CBMCVvoAGwHYJUCF3FueS9VkKuyPVf7z6GzwlTrr1LLQ7DPCxMqdbWGCtL_S8ouNTzY9UMXh3BqfHY1fvoPMRDfbxO_gCeHWoz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21379296</pqid></control><display><type>article</type><title>Mathematical model of the lower extremity joint reaction forces using Kane's method of dynamics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Komistek, R D ; Stiehl, J B ; Dennis, D A ; Paxson, R D ; Soutas-Little, R W</creator><creatorcontrib>Komistek, R D ; Stiehl, J B ; Dennis, D A ; Paxson, R D ; Soutas-Little, R W</creatorcontrib><description>This report describes a new mathematical model for defining the joint reaction forces of the lower extremity using Kane's method of dynamics. Our model utilized average lower extremity joint motion and force/plate data from one healthy female patient during gait. From a cadaver specimen, the anatomical mass centers of the pelvis, femur, tibia, and foot were determined. Joint angular motion during the normal gait cycle was computed using Cardan angles for each distal segment relative to the proximal segment. Fluoroscopy of four normal knees determined average femorotibial and patellofemoral contact positions throughout flexion. A three-dimensional model of the lower extremity was defined in weight-bearing motion by 30 differential equations. During normal walking, the joint reaction forces for the subject tested ranged from 1.9 to 2.6 times body weight at the hip joint and 1.7-2.3 times body weight at the knee joint, depending primarily on gait speed. The method correlates well with known in vivo telemetrically measured forces at the hip joint.</description><identifier>ISSN: 0021-9290</identifier><identifier>PMID: 9593214</identifier><language>eng</language><publisher>United States</publisher><subject>Arthrography ; Cadaver ; Cadaveric experiments ; Differential equations ; Exercise ; Female ; Fluoroscopy ; Gait - physiology ; Gait analysis ; Humans ; Joints (anatomy) ; Kinematics ; Kinetic theory ; Kinetics ; Knee Joint - diagnostic imaging ; Knee Joint - physiology ; Mathematical models ; Models, Biological ; Motion ; Patient monitoring ; Three dimensional ; Traction (friction)</subject><ispartof>Journal of biomechanics, 1998-02, Vol.31 (2), p.185-189</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9593214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Komistek, R D</creatorcontrib><creatorcontrib>Stiehl, J B</creatorcontrib><creatorcontrib>Dennis, D A</creatorcontrib><creatorcontrib>Paxson, R D</creatorcontrib><creatorcontrib>Soutas-Little, R W</creatorcontrib><title>Mathematical model of the lower extremity joint reaction forces using Kane's method of dynamics</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>This report describes a new mathematical model for defining the joint reaction forces of the lower extremity using Kane's method of dynamics. Our model utilized average lower extremity joint motion and force/plate data from one healthy female patient during gait. From a cadaver specimen, the anatomical mass centers of the pelvis, femur, tibia, and foot were determined. Joint angular motion during the normal gait cycle was computed using Cardan angles for each distal segment relative to the proximal segment. Fluoroscopy of four normal knees determined average femorotibial and patellofemoral contact positions throughout flexion. A three-dimensional model of the lower extremity was defined in weight-bearing motion by 30 differential equations. During normal walking, the joint reaction forces for the subject tested ranged from 1.9 to 2.6 times body weight at the hip joint and 1.7-2.3 times body weight at the knee joint, depending primarily on gait speed. The method correlates well with known in vivo telemetrically measured forces at the hip joint.</description><subject>Arthrography</subject><subject>Cadaver</subject><subject>Cadaveric experiments</subject><subject>Differential equations</subject><subject>Exercise</subject><subject>Female</subject><subject>Fluoroscopy</subject><subject>Gait - physiology</subject><subject>Gait analysis</subject><subject>Humans</subject><subject>Joints (anatomy)</subject><subject>Kinematics</subject><subject>Kinetic theory</subject><subject>Kinetics</subject><subject>Knee Joint - diagnostic imaging</subject><subject>Knee Joint - physiology</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Motion</subject><subject>Patient monitoring</subject><subject>Three dimensional</subject><subject>Traction (friction)</subject><issn>0021-9290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAYhHNQ1nX1Jwg56amQrzbJURa_cMWLnsvb9q2bpWnWJEX331tx78LAwPAwDHNClowJXlhh2Rk5T2nHGNNK2wVZ2NJKwdWS1C-Qt-ghuxYG6kOHAw09nTM6hC-MFL9zRO_yge6CGzONCG12YaR9iC0mOiU3ftBnGPEmUY95G7rfgu4wgndtuiCnPQwJL4--Iu_3d2_rx2Lz-vC0vt0Ue17ZXKjKGNMZ2xgQjdLCgC4rkI2eVSFDo0CBMCVvoAGwHYJUCF3FueS9VkKuyPVf7z6GzwlTrr1LLQ7DPCxMqdbWGCtL_S8ouNTzY9UMXh3BqfHY1fvoPMRDfbxO_gCeHWoz</recordid><startdate>199802</startdate><enddate>199802</enddate><creator>Komistek, R D</creator><creator>Stiehl, J B</creator><creator>Dennis, D A</creator><creator>Paxson, R D</creator><creator>Soutas-Little, R W</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>199802</creationdate><title>Mathematical model of the lower extremity joint reaction forces using Kane's method of dynamics</title><author>Komistek, R D ; Stiehl, J B ; Dennis, D A ; Paxson, R D ; Soutas-Little, R W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p169t-46888d89b8a2b4728a756a3b73b76e0e84a4a2851babaa9dea34ead61131f7423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Arthrography</topic><topic>Cadaver</topic><topic>Cadaveric experiments</topic><topic>Differential equations</topic><topic>Exercise</topic><topic>Female</topic><topic>Fluoroscopy</topic><topic>Gait - physiology</topic><topic>Gait analysis</topic><topic>Humans</topic><topic>Joints (anatomy)</topic><topic>Kinematics</topic><topic>Kinetic theory</topic><topic>Kinetics</topic><topic>Knee Joint - diagnostic imaging</topic><topic>Knee Joint - physiology</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Motion</topic><topic>Patient monitoring</topic><topic>Three dimensional</topic><topic>Traction (friction)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komistek, R D</creatorcontrib><creatorcontrib>Stiehl, J B</creatorcontrib><creatorcontrib>Dennis, D A</creatorcontrib><creatorcontrib>Paxson, R D</creatorcontrib><creatorcontrib>Soutas-Little, R W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komistek, R D</au><au>Stiehl, J B</au><au>Dennis, D A</au><au>Paxson, R D</au><au>Soutas-Little, R W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical model of the lower extremity joint reaction forces using Kane's method of dynamics</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>1998-02</date><risdate>1998</risdate><volume>31</volume><issue>2</issue><spage>185</spage><epage>189</epage><pages>185-189</pages><issn>0021-9290</issn><abstract>This report describes a new mathematical model for defining the joint reaction forces of the lower extremity using Kane's method of dynamics. Our model utilized average lower extremity joint motion and force/plate data from one healthy female patient during gait. From a cadaver specimen, the anatomical mass centers of the pelvis, femur, tibia, and foot were determined. Joint angular motion during the normal gait cycle was computed using Cardan angles for each distal segment relative to the proximal segment. Fluoroscopy of four normal knees determined average femorotibial and patellofemoral contact positions throughout flexion. A three-dimensional model of the lower extremity was defined in weight-bearing motion by 30 differential equations. During normal walking, the joint reaction forces for the subject tested ranged from 1.9 to 2.6 times body weight at the hip joint and 1.7-2.3 times body weight at the knee joint, depending primarily on gait speed. The method correlates well with known in vivo telemetrically measured forces at the hip joint.</abstract><cop>United States</cop><pmid>9593214</pmid><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 1998-02, Vol.31 (2), p.185-189
issn 0021-9290
language eng
recordid cdi_proquest_miscellaneous_79889357
source MEDLINE; Elsevier ScienceDirect Journals
subjects Arthrography
Cadaver
Cadaveric experiments
Differential equations
Exercise
Female
Fluoroscopy
Gait - physiology
Gait analysis
Humans
Joints (anatomy)
Kinematics
Kinetic theory
Kinetics
Knee Joint - diagnostic imaging
Knee Joint - physiology
Mathematical models
Models, Biological
Motion
Patient monitoring
Three dimensional
Traction (friction)
title Mathematical model of the lower extremity joint reaction forces using Kane's method of dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20model%20of%20the%20lower%20extremity%20joint%20reaction%20forces%20using%20Kane's%20method%20of%20dynamics&rft.jtitle=Journal%20of%20biomechanics&rft.au=Komistek,%20R%20D&rft.date=1998-02&rft.volume=31&rft.issue=2&rft.spage=185&rft.epage=189&rft.pages=185-189&rft.issn=0021-9290&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E361329%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21379296&rft_id=info:pmid/9593214&rfr_iscdi=true