Mathematical model of the lower extremity joint reaction forces using Kane's method of dynamics
This report describes a new mathematical model for defining the joint reaction forces of the lower extremity using Kane's method of dynamics. Our model utilized average lower extremity joint motion and force/plate data from one healthy female patient during gait. From a cadaver specimen, the an...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 1998-02, Vol.31 (2), p.185-189 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | 2 |
container_start_page | 185 |
container_title | Journal of biomechanics |
container_volume | 31 |
creator | Komistek, R D Stiehl, J B Dennis, D A Paxson, R D Soutas-Little, R W |
description | This report describes a new mathematical model for defining the joint reaction forces of the lower extremity using Kane's method of dynamics. Our model utilized average lower extremity joint motion and force/plate data from one healthy female patient during gait. From a cadaver specimen, the anatomical mass centers of the pelvis, femur, tibia, and foot were determined. Joint angular motion during the normal gait cycle was computed using Cardan angles for each distal segment relative to the proximal segment. Fluoroscopy of four normal knees determined average femorotibial and patellofemoral contact positions throughout flexion. A three-dimensional model of the lower extremity was defined in weight-bearing motion by 30 differential equations. During normal walking, the joint reaction forces for the subject tested ranged from 1.9 to 2.6 times body weight at the hip joint and 1.7-2.3 times body weight at the knee joint, depending primarily on gait speed. The method correlates well with known in vivo telemetrically measured forces at the hip joint. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_79889357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>361329</sourcerecordid><originalsourceid>FETCH-LOGICAL-p169t-46888d89b8a2b4728a756a3b73b76e0e84a4a2851babaa9dea34ead61131f7423</originalsourceid><addsrcrecordid>eNqFkE1LxDAYhHNQ1nX1Jwg56amQrzbJURa_cMWLnsvb9q2bpWnWJEX331tx78LAwPAwDHNClowJXlhh2Rk5T2nHGNNK2wVZ2NJKwdWS1C-Qt-ghuxYG6kOHAw09nTM6hC-MFL9zRO_yge6CGzONCG12YaR9iC0mOiU3ftBnGPEmUY95G7rfgu4wgndtuiCnPQwJL4--Iu_3d2_rx2Lz-vC0vt0Ue17ZXKjKGNMZ2xgQjdLCgC4rkI2eVSFDo0CBMCVvoAGwHYJUCF3FueS9VkKuyPVf7z6GzwlTrr1LLQ7DPCxMqdbWGCtL_S8ouNTzY9UMXh3BqfHY1fvoPMRDfbxO_gCeHWoz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21379296</pqid></control><display><type>article</type><title>Mathematical model of the lower extremity joint reaction forces using Kane's method of dynamics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Komistek, R D ; Stiehl, J B ; Dennis, D A ; Paxson, R D ; Soutas-Little, R W</creator><creatorcontrib>Komistek, R D ; Stiehl, J B ; Dennis, D A ; Paxson, R D ; Soutas-Little, R W</creatorcontrib><description>This report describes a new mathematical model for defining the joint reaction forces of the lower extremity using Kane's method of dynamics. Our model utilized average lower extremity joint motion and force/plate data from one healthy female patient during gait. From a cadaver specimen, the anatomical mass centers of the pelvis, femur, tibia, and foot were determined. Joint angular motion during the normal gait cycle was computed using Cardan angles for each distal segment relative to the proximal segment. Fluoroscopy of four normal knees determined average femorotibial and patellofemoral contact positions throughout flexion. A three-dimensional model of the lower extremity was defined in weight-bearing motion by 30 differential equations. During normal walking, the joint reaction forces for the subject tested ranged from 1.9 to 2.6 times body weight at the hip joint and 1.7-2.3 times body weight at the knee joint, depending primarily on gait speed. The method correlates well with known in vivo telemetrically measured forces at the hip joint.</description><identifier>ISSN: 0021-9290</identifier><identifier>PMID: 9593214</identifier><language>eng</language><publisher>United States</publisher><subject>Arthrography ; Cadaver ; Cadaveric experiments ; Differential equations ; Exercise ; Female ; Fluoroscopy ; Gait - physiology ; Gait analysis ; Humans ; Joints (anatomy) ; Kinematics ; Kinetic theory ; Kinetics ; Knee Joint - diagnostic imaging ; Knee Joint - physiology ; Mathematical models ; Models, Biological ; Motion ; Patient monitoring ; Three dimensional ; Traction (friction)</subject><ispartof>Journal of biomechanics, 1998-02, Vol.31 (2), p.185-189</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9593214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Komistek, R D</creatorcontrib><creatorcontrib>Stiehl, J B</creatorcontrib><creatorcontrib>Dennis, D A</creatorcontrib><creatorcontrib>Paxson, R D</creatorcontrib><creatorcontrib>Soutas-Little, R W</creatorcontrib><title>Mathematical model of the lower extremity joint reaction forces using Kane's method of dynamics</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>This report describes a new mathematical model for defining the joint reaction forces of the lower extremity using Kane's method of dynamics. Our model utilized average lower extremity joint motion and force/plate data from one healthy female patient during gait. From a cadaver specimen, the anatomical mass centers of the pelvis, femur, tibia, and foot were determined. Joint angular motion during the normal gait cycle was computed using Cardan angles for each distal segment relative to the proximal segment. Fluoroscopy of four normal knees determined average femorotibial and patellofemoral contact positions throughout flexion. A three-dimensional model of the lower extremity was defined in weight-bearing motion by 30 differential equations. During normal walking, the joint reaction forces for the subject tested ranged from 1.9 to 2.6 times body weight at the hip joint and 1.7-2.3 times body weight at the knee joint, depending primarily on gait speed. The method correlates well with known in vivo telemetrically measured forces at the hip joint.</description><subject>Arthrography</subject><subject>Cadaver</subject><subject>Cadaveric experiments</subject><subject>Differential equations</subject><subject>Exercise</subject><subject>Female</subject><subject>Fluoroscopy</subject><subject>Gait - physiology</subject><subject>Gait analysis</subject><subject>Humans</subject><subject>Joints (anatomy)</subject><subject>Kinematics</subject><subject>Kinetic theory</subject><subject>Kinetics</subject><subject>Knee Joint - diagnostic imaging</subject><subject>Knee Joint - physiology</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Motion</subject><subject>Patient monitoring</subject><subject>Three dimensional</subject><subject>Traction (friction)</subject><issn>0021-9290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAYhHNQ1nX1Jwg56amQrzbJURa_cMWLnsvb9q2bpWnWJEX331tx78LAwPAwDHNClowJXlhh2Rk5T2nHGNNK2wVZ2NJKwdWS1C-Qt-ghuxYG6kOHAw09nTM6hC-MFL9zRO_yge6CGzONCG12YaR9iC0mOiU3ftBnGPEmUY95G7rfgu4wgndtuiCnPQwJL4--Iu_3d2_rx2Lz-vC0vt0Ue17ZXKjKGNMZ2xgQjdLCgC4rkI2eVSFDo0CBMCVvoAGwHYJUCF3FueS9VkKuyPVf7z6GzwlTrr1LLQ7DPCxMqdbWGCtL_S8ouNTzY9UMXh3BqfHY1fvoPMRDfbxO_gCeHWoz</recordid><startdate>199802</startdate><enddate>199802</enddate><creator>Komistek, R D</creator><creator>Stiehl, J B</creator><creator>Dennis, D A</creator><creator>Paxson, R D</creator><creator>Soutas-Little, R W</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>199802</creationdate><title>Mathematical model of the lower extremity joint reaction forces using Kane's method of dynamics</title><author>Komistek, R D ; Stiehl, J B ; Dennis, D A ; Paxson, R D ; Soutas-Little, R W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p169t-46888d89b8a2b4728a756a3b73b76e0e84a4a2851babaa9dea34ead61131f7423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Arthrography</topic><topic>Cadaver</topic><topic>Cadaveric experiments</topic><topic>Differential equations</topic><topic>Exercise</topic><topic>Female</topic><topic>Fluoroscopy</topic><topic>Gait - physiology</topic><topic>Gait analysis</topic><topic>Humans</topic><topic>Joints (anatomy)</topic><topic>Kinematics</topic><topic>Kinetic theory</topic><topic>Kinetics</topic><topic>Knee Joint - diagnostic imaging</topic><topic>Knee Joint - physiology</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Motion</topic><topic>Patient monitoring</topic><topic>Three dimensional</topic><topic>Traction (friction)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komistek, R D</creatorcontrib><creatorcontrib>Stiehl, J B</creatorcontrib><creatorcontrib>Dennis, D A</creatorcontrib><creatorcontrib>Paxson, R D</creatorcontrib><creatorcontrib>Soutas-Little, R W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komistek, R D</au><au>Stiehl, J B</au><au>Dennis, D A</au><au>Paxson, R D</au><au>Soutas-Little, R W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical model of the lower extremity joint reaction forces using Kane's method of dynamics</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>1998-02</date><risdate>1998</risdate><volume>31</volume><issue>2</issue><spage>185</spage><epage>189</epage><pages>185-189</pages><issn>0021-9290</issn><abstract>This report describes a new mathematical model for defining the joint reaction forces of the lower extremity using Kane's method of dynamics. Our model utilized average lower extremity joint motion and force/plate data from one healthy female patient during gait. From a cadaver specimen, the anatomical mass centers of the pelvis, femur, tibia, and foot were determined. Joint angular motion during the normal gait cycle was computed using Cardan angles for each distal segment relative to the proximal segment. Fluoroscopy of four normal knees determined average femorotibial and patellofemoral contact positions throughout flexion. A three-dimensional model of the lower extremity was defined in weight-bearing motion by 30 differential equations. During normal walking, the joint reaction forces for the subject tested ranged from 1.9 to 2.6 times body weight at the hip joint and 1.7-2.3 times body weight at the knee joint, depending primarily on gait speed. The method correlates well with known in vivo telemetrically measured forces at the hip joint.</abstract><cop>United States</cop><pmid>9593214</pmid><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 1998-02, Vol.31 (2), p.185-189 |
issn | 0021-9290 |
language | eng |
recordid | cdi_proquest_miscellaneous_79889357 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Arthrography Cadaver Cadaveric experiments Differential equations Exercise Female Fluoroscopy Gait - physiology Gait analysis Humans Joints (anatomy) Kinematics Kinetic theory Kinetics Knee Joint - diagnostic imaging Knee Joint - physiology Mathematical models Models, Biological Motion Patient monitoring Three dimensional Traction (friction) |
title | Mathematical model of the lower extremity joint reaction forces using Kane's method of dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A18%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20model%20of%20the%20lower%20extremity%20joint%20reaction%20forces%20using%20Kane's%20method%20of%20dynamics&rft.jtitle=Journal%20of%20biomechanics&rft.au=Komistek,%20R%20D&rft.date=1998-02&rft.volume=31&rft.issue=2&rft.spage=185&rft.epage=189&rft.pages=185-189&rft.issn=0021-9290&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E361329%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21379296&rft_id=info:pmid/9593214&rfr_iscdi=true |