Cellular Mechanism of Intraabdominal Abscess Formation by Bacteroides fragilis

We investigated the cellular mechanism by which Bacteroides fragilis promotes the development of intraabdominal abscesses in experimental models of sepsis. B. fragilis, as well as purified capsular polysaccharide complex (CPC) from this organism, adhered to primary murine mesothelial cells (MMCs) in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 1998-05, Vol.160 (10), p.5000-5006
Hauptverfasser: Gibson, Frank C., III, Onderdonk, Andrew B, Kasper, Dennis L, Tzianabos, Arthur O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the cellular mechanism by which Bacteroides fragilis promotes the development of intraabdominal abscesses in experimental models of sepsis. B. fragilis, as well as purified capsular polysaccharide complex (CPC) from this organism, adhered to primary murine mesothelial cells (MMCs) in vitro. The binding of CPC to murine peritoneal macrophage stimulated TNF-alpha production, which when transferred to monolayers of MMCs elicited significant ICAM-1 expression by these cells. This response resulted in enhanced polymorphonuclear leukocyte attachment to MMCs that could be inhibited by Abs specific for TNF-alpha or ICAM-1. Mice treated with TNF-alpha- or ICAM-1-specific Abs failed to develop intraabdominal abscesses following challenge with purified CPC. These results illustrated the role of the CPC in promoting adhesion of B. fragilis to the peritoneal wall and coordinating the cellular events leading to the development of abscesses associated with experimental intraabdominal sepsis.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.160.10.5000