Components of the Signaling Pathway Linking the 1-Methyladenine Receptor to MPF Activation and Maturation in Starfish Oocytes

Starfish oocytes are arrested at the G2/M-phase border of meiosis I. Exposure to their natural mitogen, 1-methyladenine (1-MA), leads to the activation of MPF and MAP kinase, resumption of the meiotic cell cycle, and fertilization competency. The 1-MA receptor has not yet been identified, but it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental biology 1998-05, Vol.197 (1), p.25-38
Hauptverfasser: Sadler, Kirsten C., Ruderman, Joan V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 25
container_title Developmental biology
container_volume 197
creator Sadler, Kirsten C.
Ruderman, Joan V.
description Starfish oocytes are arrested at the G2/M-phase border of meiosis I. Exposure to their natural mitogen, 1-methyladenine (1-MA), leads to the activation of MPF and MAP kinase, resumption of the meiotic cell cycle, and fertilization competency. The 1-MA receptor has not yet been identified, but it is known to be linked functionally to a pertussis toxin-sensitive G-protein. Gβγ appears to be the major effector of the 1-MA receptor, since injection of Gβγ, but not activated Gαi, leads to the activation of MPF, entry into meiosis, and oocyte maturation. The components that connect Gβγ to MPF and MAP kinase activation in oocytes are unknown. In mammalian cells, a novel phosphatidylinositol 3-kinase, PI-3 kinase-γ, links Gβγ to the MAP kinase activation pathway. Here we show that PI-3 kinase is required for starfish oocyte maturation. LY294002 and wortmannin, inhibitors of PI-3 kinase, block MPF and MAP kinase activation and entry into meiosis. Inhibition by LY294002 is reversible and limited to the hormone-dependent period. Neither inhibitor, however, blocks the earliest hormone-induced event, formation of actin spikes at the cell membrane. By contrast, pertussis toxin blocks both actin spiking and later events, arguing that PI-3 kinase functions downstream of Gβγ. Finally, we show that unlike the well-studied case inXenopusoocytes, where MAP kinase is an essential component of the MPF activation pathway, MAP kinase is not required for either MPF activation or subsequent oocyte maturation in starfish. Instead, its major role appears to be suppression of DNA synthesis in unfertilized, haploid eggs.
doi_str_mv 10.1006/dbio.1998.8869
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79872583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160698988698</els_id><sourcerecordid>79872583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-8e9238d63d3c161f25e141e6f6772b5e9a6f1a523788fb3dbd382f4e229d4a9b3</originalsourceid><addsrcrecordid>eNp1kEtrGzEUhUVoSZ002-wKWnU3rh4zGmkZTJMGbBKaFrITGukqVjuWXElO8aL_vR5suuvqcjgPuB9C15TMKSHikxtCmlOl5FxKoc7QjBLVNZ1on9-gGSGUNVQQ8Q5dlPKDEMKl5OfoXHW9FFTM0J9F2mxThFgLTh7XNeCn8BLNGOILfjR1_dvs8TLEn5OeXNqsoK73o3EQQwT8FSxsa8q4Jrx6vMU3toZXU0OK2ESHV6bu8lGGiJ-qyT6UNX5Idl-hvEdvvRkLXJ3uJfp--_nb4kuzfLi7X9wsG9u2XW0kKMalE9xxSwX1rAPaUhBe9D0bOlBGeGo6xnsp_cDd4LhkvgXGlGuNGvgl-njc3eb0awel6k0oFsbRREi7onsle9ZJfgjOj0GbUykZvN7msDF5rynRE2898dYTbz3xPhQ-nJZ3wwbcv_gJ8MGXRx8O770GyLrYANGCCxls1S6F_03_BSjmkKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79872583</pqid></control><display><type>article</type><title>Components of the Signaling Pathway Linking the 1-Methyladenine Receptor to MPF Activation and Maturation in Starfish Oocytes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sadler, Kirsten C. ; Ruderman, Joan V.</creator><creatorcontrib>Sadler, Kirsten C. ; Ruderman, Joan V.</creatorcontrib><description>Starfish oocytes are arrested at the G2/M-phase border of meiosis I. Exposure to their natural mitogen, 1-methyladenine (1-MA), leads to the activation of MPF and MAP kinase, resumption of the meiotic cell cycle, and fertilization competency. The 1-MA receptor has not yet been identified, but it is known to be linked functionally to a pertussis toxin-sensitive G-protein. Gβγ appears to be the major effector of the 1-MA receptor, since injection of Gβγ, but not activated Gαi, leads to the activation of MPF, entry into meiosis, and oocyte maturation. The components that connect Gβγ to MPF and MAP kinase activation in oocytes are unknown. In mammalian cells, a novel phosphatidylinositol 3-kinase, PI-3 kinase-γ, links Gβγ to the MAP kinase activation pathway. Here we show that PI-3 kinase is required for starfish oocyte maturation. LY294002 and wortmannin, inhibitors of PI-3 kinase, block MPF and MAP kinase activation and entry into meiosis. Inhibition by LY294002 is reversible and limited to the hormone-dependent period. Neither inhibitor, however, blocks the earliest hormone-induced event, formation of actin spikes at the cell membrane. By contrast, pertussis toxin blocks both actin spiking and later events, arguing that PI-3 kinase functions downstream of Gβγ. Finally, we show that unlike the well-studied case inXenopusoocytes, where MAP kinase is an essential component of the MPF activation pathway, MAP kinase is not required for either MPF activation or subsequent oocyte maturation in starfish. Instead, its major role appears to be suppression of DNA synthesis in unfertilized, haploid eggs.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1006/dbio.1998.8869</identifier><identifier>PMID: 9578616</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Calcium-Calmodulin-Dependent Protein Kinases - metabolism ; Cells, Cultured ; Chromones - pharmacology ; DNA Replication ; Enzyme Activation ; Enzyme Inhibitors - pharmacology ; G2 Phase ; Maturation-Promoting Factor - metabolism ; Mitosis ; Morpholines - pharmacology ; Oocytes - enzymology ; Oocytes - growth &amp; development ; Phosphatidylinositol 3-Kinases - metabolism ; Receptors, Cell Surface - physiology ; Receptors, G-Protein-Coupled ; Signal Transduction ; Starfish</subject><ispartof>Developmental biology, 1998-05, Vol.197 (1), p.25-38</ispartof><rights>1998 Academic Press</rights><rights>Copyright 1998 Academic Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-8e9238d63d3c161f25e141e6f6772b5e9a6f1a523788fb3dbd382f4e229d4a9b3</citedby><cites>FETCH-LOGICAL-c445t-8e9238d63d3c161f25e141e6f6772b5e9a6f1a523788fb3dbd382f4e229d4a9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0012160698988698$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9578616$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadler, Kirsten C.</creatorcontrib><creatorcontrib>Ruderman, Joan V.</creatorcontrib><title>Components of the Signaling Pathway Linking the 1-Methyladenine Receptor to MPF Activation and Maturation in Starfish Oocytes</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>Starfish oocytes are arrested at the G2/M-phase border of meiosis I. Exposure to their natural mitogen, 1-methyladenine (1-MA), leads to the activation of MPF and MAP kinase, resumption of the meiotic cell cycle, and fertilization competency. The 1-MA receptor has not yet been identified, but it is known to be linked functionally to a pertussis toxin-sensitive G-protein. Gβγ appears to be the major effector of the 1-MA receptor, since injection of Gβγ, but not activated Gαi, leads to the activation of MPF, entry into meiosis, and oocyte maturation. The components that connect Gβγ to MPF and MAP kinase activation in oocytes are unknown. In mammalian cells, a novel phosphatidylinositol 3-kinase, PI-3 kinase-γ, links Gβγ to the MAP kinase activation pathway. Here we show that PI-3 kinase is required for starfish oocyte maturation. LY294002 and wortmannin, inhibitors of PI-3 kinase, block MPF and MAP kinase activation and entry into meiosis. Inhibition by LY294002 is reversible and limited to the hormone-dependent period. Neither inhibitor, however, blocks the earliest hormone-induced event, formation of actin spikes at the cell membrane. By contrast, pertussis toxin blocks both actin spiking and later events, arguing that PI-3 kinase functions downstream of Gβγ. Finally, we show that unlike the well-studied case inXenopusoocytes, where MAP kinase is an essential component of the MPF activation pathway, MAP kinase is not required for either MPF activation or subsequent oocyte maturation in starfish. Instead, its major role appears to be suppression of DNA synthesis in unfertilized, haploid eggs.</description><subject>Animals</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</subject><subject>Cells, Cultured</subject><subject>Chromones - pharmacology</subject><subject>DNA Replication</subject><subject>Enzyme Activation</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>G2 Phase</subject><subject>Maturation-Promoting Factor - metabolism</subject><subject>Mitosis</subject><subject>Morpholines - pharmacology</subject><subject>Oocytes - enzymology</subject><subject>Oocytes - growth &amp; development</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Receptors, Cell Surface - physiology</subject><subject>Receptors, G-Protein-Coupled</subject><subject>Signal Transduction</subject><subject>Starfish</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtrGzEUhUVoSZ002-wKWnU3rh4zGmkZTJMGbBKaFrITGukqVjuWXElO8aL_vR5suuvqcjgPuB9C15TMKSHikxtCmlOl5FxKoc7QjBLVNZ1on9-gGSGUNVQQ8Q5dlPKDEMKl5OfoXHW9FFTM0J9F2mxThFgLTh7XNeCn8BLNGOILfjR1_dvs8TLEn5OeXNqsoK73o3EQQwT8FSxsa8q4Jrx6vMU3toZXU0OK2ESHV6bu8lGGiJ-qyT6UNX5Idl-hvEdvvRkLXJ3uJfp--_nb4kuzfLi7X9wsG9u2XW0kKMalE9xxSwX1rAPaUhBe9D0bOlBGeGo6xnsp_cDd4LhkvgXGlGuNGvgl-njc3eb0awel6k0oFsbRREi7onsle9ZJfgjOj0GbUykZvN7msDF5rynRE2898dYTbz3xPhQ-nJZ3wwbcv_gJ8MGXRx8O770GyLrYANGCCxls1S6F_03_BSjmkKg</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>Sadler, Kirsten C.</creator><creator>Ruderman, Joan V.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980501</creationdate><title>Components of the Signaling Pathway Linking the 1-Methyladenine Receptor to MPF Activation and Maturation in Starfish Oocytes</title><author>Sadler, Kirsten C. ; Ruderman, Joan V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-8e9238d63d3c161f25e141e6f6772b5e9a6f1a523788fb3dbd382f4e229d4a9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</topic><topic>Cells, Cultured</topic><topic>Chromones - pharmacology</topic><topic>DNA Replication</topic><topic>Enzyme Activation</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>G2 Phase</topic><topic>Maturation-Promoting Factor - metabolism</topic><topic>Mitosis</topic><topic>Morpholines - pharmacology</topic><topic>Oocytes - enzymology</topic><topic>Oocytes - growth &amp; development</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Receptors, Cell Surface - physiology</topic><topic>Receptors, G-Protein-Coupled</topic><topic>Signal Transduction</topic><topic>Starfish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadler, Kirsten C.</creatorcontrib><creatorcontrib>Ruderman, Joan V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadler, Kirsten C.</au><au>Ruderman, Joan V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Components of the Signaling Pathway Linking the 1-Methyladenine Receptor to MPF Activation and Maturation in Starfish Oocytes</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>1998-05-01</date><risdate>1998</risdate><volume>197</volume><issue>1</issue><spage>25</spage><epage>38</epage><pages>25-38</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>Starfish oocytes are arrested at the G2/M-phase border of meiosis I. Exposure to their natural mitogen, 1-methyladenine (1-MA), leads to the activation of MPF and MAP kinase, resumption of the meiotic cell cycle, and fertilization competency. The 1-MA receptor has not yet been identified, but it is known to be linked functionally to a pertussis toxin-sensitive G-protein. Gβγ appears to be the major effector of the 1-MA receptor, since injection of Gβγ, but not activated Gαi, leads to the activation of MPF, entry into meiosis, and oocyte maturation. The components that connect Gβγ to MPF and MAP kinase activation in oocytes are unknown. In mammalian cells, a novel phosphatidylinositol 3-kinase, PI-3 kinase-γ, links Gβγ to the MAP kinase activation pathway. Here we show that PI-3 kinase is required for starfish oocyte maturation. LY294002 and wortmannin, inhibitors of PI-3 kinase, block MPF and MAP kinase activation and entry into meiosis. Inhibition by LY294002 is reversible and limited to the hormone-dependent period. Neither inhibitor, however, blocks the earliest hormone-induced event, formation of actin spikes at the cell membrane. By contrast, pertussis toxin blocks both actin spiking and later events, arguing that PI-3 kinase functions downstream of Gβγ. Finally, we show that unlike the well-studied case inXenopusoocytes, where MAP kinase is an essential component of the MPF activation pathway, MAP kinase is not required for either MPF activation or subsequent oocyte maturation in starfish. Instead, its major role appears to be suppression of DNA synthesis in unfertilized, haploid eggs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9578616</pmid><doi>10.1006/dbio.1998.8869</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1606
ispartof Developmental biology, 1998-05, Vol.197 (1), p.25-38
issn 0012-1606
1095-564X
language eng
recordid cdi_proquest_miscellaneous_79872583
source MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
Calcium-Calmodulin-Dependent Protein Kinases - metabolism
Cells, Cultured
Chromones - pharmacology
DNA Replication
Enzyme Activation
Enzyme Inhibitors - pharmacology
G2 Phase
Maturation-Promoting Factor - metabolism
Mitosis
Morpholines - pharmacology
Oocytes - enzymology
Oocytes - growth & development
Phosphatidylinositol 3-Kinases - metabolism
Receptors, Cell Surface - physiology
Receptors, G-Protein-Coupled
Signal Transduction
Starfish
title Components of the Signaling Pathway Linking the 1-Methyladenine Receptor to MPF Activation and Maturation in Starfish Oocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Components%20of%20the%20Signaling%20Pathway%20Linking%20the%201-Methyladenine%20Receptor%20to%20MPF%20Activation%20and%20Maturation%20in%20Starfish%20Oocytes&rft.jtitle=Developmental%20biology&rft.au=Sadler,%20Kirsten%20C.&rft.date=1998-05-01&rft.volume=197&rft.issue=1&rft.spage=25&rft.epage=38&rft.pages=25-38&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1006/dbio.1998.8869&rft_dat=%3Cproquest_cross%3E79872583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79872583&rft_id=info:pmid/9578616&rft_els_id=S0012160698988698&rfr_iscdi=true