Application of Region of Interest Definition to Quadtree-Based Compression of CT Images

A quadtree-based data compression algorithm can provide different levels of compression within and outside of regions of interest (ROIs). The current study shows whether ROI compression can provide greater compression or diagnostic accuracy than uniform quadtree compression. In 75 single CT images f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative radiology 1990-06, Vol.25 (6), p.703-707
Hauptverfasser: HALPERN, ETHAN J, PREMKUMAR, AHALYA, MULLEN, DAVID J, NG, CHRIS C, LEVY, HOWARD M, NEWHOUSE, JEFFREY H, AMIS, E STEPHEN, SANDERS, LINDA M, MUN, IN K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 6
container_start_page 703
container_title Investigative radiology
container_volume 25
creator HALPERN, ETHAN J
PREMKUMAR, AHALYA
MULLEN, DAVID J
NG, CHRIS C
LEVY, HOWARD M
NEWHOUSE, JEFFREY H
AMIS, E STEPHEN
SANDERS, LINDA M
MUN, IN K
description A quadtree-based data compression algorithm can provide different levels of compression within and outside of regions of interest (ROIs). The current study shows whether ROI compression can provide greater compression or diagnostic accuracy than uniform quadtree compression. In 75 single CT images from 75 consecutive abdominal examinations, 43 abnormalities were identified and surrounded by ROIs. Three radiologists interpreted the images following (I) 50:1 compression of the entire image; (2) ROI compression at five decreasing compression ratios (with 50:1 compression outside the ROI); and (3) reversible (lossless) compression ratio 3:1) yielded a sensitivity of 96%. ROI compression of 15:1 was achieved with no loss of sensitivity; ROI compression of 28:1 yielded a sensitivity of 91% (not significantly different). At any given compression ratio, diagnostic sensitivity was greater with ROI compression than with uniform quadtree compression. For purposes of image archiving, quadtree-based ROI compression is superior to uniform compression of CT images.
doi_str_mv 10.1097/00004424-199006000-00015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79834462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79834462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4505-62216d96c8210f4783b0950d43bfb33f0ec458397624c49d654f1f8c90b505a63</originalsourceid><addsrcrecordid>eNp1kVtLwzAYhoMoc05_gtAr76pfDk2by1lPg4EoEy9D2iZbtSeTluG_N251dwZCEr7nTT6eIBRguMYg4hvwgzHCQiwEAPen0E8cHaEpjigPgWA4RlMAAqEQgp-iM-c-PEJioBM0ITRigrIpep93XVXmqi_bJmhN8KrX427R9Npq1wd32pRNuQP6NngZVNFbrcNb5XQRpG3decqNoXQVLGq11u4cnRhVOX0xrjP09nC_Sp_C5fPjIp0vw5xFEIWcEMwLwfPEN2xYnNAMRAQFo5nJKDWgPZdQEXPCciYKHjGDTZILyHxccTpDV_t7O9t-Db5dWZcu11WlGt0OTsYioYxx4sFkD-a2dc5qIztb1sp-Swzy16n8cyoPTuXOqY9ejm8MWa2LQ3CU6OtsX9-2lXfmPqthq63caFX1G_nfV9Ef7S9_Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79834462</pqid></control><display><type>article</type><title>Application of Region of Interest Definition to Quadtree-Based Compression of CT Images</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>HALPERN, ETHAN J ; PREMKUMAR, AHALYA ; MULLEN, DAVID J ; NG, CHRIS C ; LEVY, HOWARD M ; NEWHOUSE, JEFFREY H ; AMIS, E STEPHEN ; SANDERS, LINDA M ; MUN, IN K</creator><creatorcontrib>HALPERN, ETHAN J ; PREMKUMAR, AHALYA ; MULLEN, DAVID J ; NG, CHRIS C ; LEVY, HOWARD M ; NEWHOUSE, JEFFREY H ; AMIS, E STEPHEN ; SANDERS, LINDA M ; MUN, IN K</creatorcontrib><description>A quadtree-based data compression algorithm can provide different levels of compression within and outside of regions of interest (ROIs). The current study shows whether ROI compression can provide greater compression or diagnostic accuracy than uniform quadtree compression. In 75 single CT images from 75 consecutive abdominal examinations, 43 abnormalities were identified and surrounded by ROIs. Three radiologists interpreted the images following (I) 50:1 compression of the entire image; (2) ROI compression at five decreasing compression ratios (with 50:1 compression outside the ROI); and (3) reversible (lossless) compression ratio 3:1) yielded a sensitivity of 96%. ROI compression of 15:1 was achieved with no loss of sensitivity; ROI compression of 28:1 yielded a sensitivity of 91% (not significantly different). At any given compression ratio, diagnostic sensitivity was greater with ROI compression than with uniform quadtree compression. For purposes of image archiving, quadtree-based ROI compression is superior to uniform compression of CT images.</description><identifier>ISSN: 0020-9996</identifier><identifier>EISSN: 1536-0210</identifier><identifier>DOI: 10.1097/00004424-199006000-00015</identifier><identifier>PMID: 2354934</identifier><language>eng</language><publisher>United States: Lippincott-Raven Publishers</publisher><subject>Algorithms ; Humans ; Image Processing, Computer-Assisted ; Radiology Information Systems ; Tomography, X-Ray Computed</subject><ispartof>Investigative radiology, 1990-06, Vol.25 (6), p.703-707</ispartof><rights>Lippincott-Raven Publishers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4505-62216d96c8210f4783b0950d43bfb33f0ec458397624c49d654f1f8c90b505a63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2354934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HALPERN, ETHAN J</creatorcontrib><creatorcontrib>PREMKUMAR, AHALYA</creatorcontrib><creatorcontrib>MULLEN, DAVID J</creatorcontrib><creatorcontrib>NG, CHRIS C</creatorcontrib><creatorcontrib>LEVY, HOWARD M</creatorcontrib><creatorcontrib>NEWHOUSE, JEFFREY H</creatorcontrib><creatorcontrib>AMIS, E STEPHEN</creatorcontrib><creatorcontrib>SANDERS, LINDA M</creatorcontrib><creatorcontrib>MUN, IN K</creatorcontrib><title>Application of Region of Interest Definition to Quadtree-Based Compression of CT Images</title><title>Investigative radiology</title><addtitle>Invest Radiol</addtitle><description>A quadtree-based data compression algorithm can provide different levels of compression within and outside of regions of interest (ROIs). The current study shows whether ROI compression can provide greater compression or diagnostic accuracy than uniform quadtree compression. In 75 single CT images from 75 consecutive abdominal examinations, 43 abnormalities were identified and surrounded by ROIs. Three radiologists interpreted the images following (I) 50:1 compression of the entire image; (2) ROI compression at five decreasing compression ratios (with 50:1 compression outside the ROI); and (3) reversible (lossless) compression ratio 3:1) yielded a sensitivity of 96%. ROI compression of 15:1 was achieved with no loss of sensitivity; ROI compression of 28:1 yielded a sensitivity of 91% (not significantly different). At any given compression ratio, diagnostic sensitivity was greater with ROI compression than with uniform quadtree compression. For purposes of image archiving, quadtree-based ROI compression is superior to uniform compression of CT images.</description><subject>Algorithms</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Radiology Information Systems</subject><subject>Tomography, X-Ray Computed</subject><issn>0020-9996</issn><issn>1536-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kVtLwzAYhoMoc05_gtAr76pfDk2by1lPg4EoEy9D2iZbtSeTluG_N251dwZCEr7nTT6eIBRguMYg4hvwgzHCQiwEAPen0E8cHaEpjigPgWA4RlMAAqEQgp-iM-c-PEJioBM0ITRigrIpep93XVXmqi_bJmhN8KrX427R9Npq1wd32pRNuQP6NngZVNFbrcNb5XQRpG3decqNoXQVLGq11u4cnRhVOX0xrjP09nC_Sp_C5fPjIp0vw5xFEIWcEMwLwfPEN2xYnNAMRAQFo5nJKDWgPZdQEXPCciYKHjGDTZILyHxccTpDV_t7O9t-Db5dWZcu11WlGt0OTsYioYxx4sFkD-a2dc5qIztb1sp-Swzy16n8cyoPTuXOqY9ejm8MWa2LQ3CU6OtsX9-2lXfmPqthq63caFX1G_nfV9Ef7S9_Xw</recordid><startdate>199006</startdate><enddate>199006</enddate><creator>HALPERN, ETHAN J</creator><creator>PREMKUMAR, AHALYA</creator><creator>MULLEN, DAVID J</creator><creator>NG, CHRIS C</creator><creator>LEVY, HOWARD M</creator><creator>NEWHOUSE, JEFFREY H</creator><creator>AMIS, E STEPHEN</creator><creator>SANDERS, LINDA M</creator><creator>MUN, IN K</creator><general>Lippincott-Raven Publishers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199006</creationdate><title>Application of Region of Interest Definition to Quadtree-Based Compression of CT Images</title><author>HALPERN, ETHAN J ; PREMKUMAR, AHALYA ; MULLEN, DAVID J ; NG, CHRIS C ; LEVY, HOWARD M ; NEWHOUSE, JEFFREY H ; AMIS, E STEPHEN ; SANDERS, LINDA M ; MUN, IN K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4505-62216d96c8210f4783b0950d43bfb33f0ec458397624c49d654f1f8c90b505a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Algorithms</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Radiology Information Systems</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HALPERN, ETHAN J</creatorcontrib><creatorcontrib>PREMKUMAR, AHALYA</creatorcontrib><creatorcontrib>MULLEN, DAVID J</creatorcontrib><creatorcontrib>NG, CHRIS C</creatorcontrib><creatorcontrib>LEVY, HOWARD M</creatorcontrib><creatorcontrib>NEWHOUSE, JEFFREY H</creatorcontrib><creatorcontrib>AMIS, E STEPHEN</creatorcontrib><creatorcontrib>SANDERS, LINDA M</creatorcontrib><creatorcontrib>MUN, IN K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Investigative radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HALPERN, ETHAN J</au><au>PREMKUMAR, AHALYA</au><au>MULLEN, DAVID J</au><au>NG, CHRIS C</au><au>LEVY, HOWARD M</au><au>NEWHOUSE, JEFFREY H</au><au>AMIS, E STEPHEN</au><au>SANDERS, LINDA M</au><au>MUN, IN K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Region of Interest Definition to Quadtree-Based Compression of CT Images</atitle><jtitle>Investigative radiology</jtitle><addtitle>Invest Radiol</addtitle><date>1990-06</date><risdate>1990</risdate><volume>25</volume><issue>6</issue><spage>703</spage><epage>707</epage><pages>703-707</pages><issn>0020-9996</issn><eissn>1536-0210</eissn><abstract>A quadtree-based data compression algorithm can provide different levels of compression within and outside of regions of interest (ROIs). The current study shows whether ROI compression can provide greater compression or diagnostic accuracy than uniform quadtree compression. In 75 single CT images from 75 consecutive abdominal examinations, 43 abnormalities were identified and surrounded by ROIs. Three radiologists interpreted the images following (I) 50:1 compression of the entire image; (2) ROI compression at five decreasing compression ratios (with 50:1 compression outside the ROI); and (3) reversible (lossless) compression ratio 3:1) yielded a sensitivity of 96%. ROI compression of 15:1 was achieved with no loss of sensitivity; ROI compression of 28:1 yielded a sensitivity of 91% (not significantly different). At any given compression ratio, diagnostic sensitivity was greater with ROI compression than with uniform quadtree compression. For purposes of image archiving, quadtree-based ROI compression is superior to uniform compression of CT images.</abstract><cop>United States</cop><pub>Lippincott-Raven Publishers</pub><pmid>2354934</pmid><doi>10.1097/00004424-199006000-00015</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-9996
ispartof Investigative radiology, 1990-06, Vol.25 (6), p.703-707
issn 0020-9996
1536-0210
language eng
recordid cdi_proquest_miscellaneous_79834462
source MEDLINE; Journals@Ovid Complete
subjects Algorithms
Humans
Image Processing, Computer-Assisted
Radiology Information Systems
Tomography, X-Ray Computed
title Application of Region of Interest Definition to Quadtree-Based Compression of CT Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Region%20of%20Interest%20Definition%20to%20Quadtree-Based%20Compression%20of%20CT%20Images&rft.jtitle=Investigative%20radiology&rft.au=HALPERN,%20ETHAN%20J&rft.date=1990-06&rft.volume=25&rft.issue=6&rft.spage=703&rft.epage=707&rft.pages=703-707&rft.issn=0020-9996&rft.eissn=1536-0210&rft_id=info:doi/10.1097/00004424-199006000-00015&rft_dat=%3Cproquest_cross%3E79834462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79834462&rft_id=info:pmid/2354934&rfr_iscdi=true