Specificity in cholesterol regulation of gene expression by coevolution of sterol regulatory DNA element and its binding protein
When demand for cholesterol rises in mammalian cells, the sterol regulatory element (SRE) binding proteins (SREBPs) are released from their membrane anchor through proteolysis. Then, the N-terminal region enters the nucleus and activates genes of cholesterol uptake and biosynthesis. Basic helix-loop...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1998-04, Vol.95 (9), p.4935-4940 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4940 |
---|---|
container_issue | 9 |
container_start_page | 4935 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 95 |
creator | Athanikar, J.N. (University of Texas Southwestern, Dallas, TX.) Osborne, T.F |
description | When demand for cholesterol rises in mammalian cells, the sterol regulatory element (SRE) binding proteins (SREBPs) are released from their membrane anchor through proteolysis. Then, the N-terminal region enters the nucleus and activates genes of cholesterol uptake and biosynthesis. Basic helix-loop-helix (bHLH) proteins such as SREBPs bind to a palindromic DNA sequence called the E-box (5'-CANNTG-3'). However, SREBPs are special because they also bind direct repeat elements called SREs. Importantly, sterol regulation of all promoters studied thus far is mediated by SREBP binding only to SREs. To study the reason for this we converted the direct repeat SRE from the sterol-regulated low-density lipoprotein receptor promoter into an E-box. In this report we show that SREBPs are still able to bind and activate this promoter however, sterol regulation is lost. The results are consistent with the mutant promoter being a target for promiscuous activation by constitutively expressed E-box binding bHLH proteins that are not regulated by cholesterol. Kim and coworkers [Kim, J. B., Spotts, G. D., Halvorsen, Y.-D., Shih, H.-M., Ellenberger, T., Towle, H. C. and Spiegelman, B. M. (1995) Mol. Cell. Biol. 15, 2582-2588] demonstrated that the dual DNA binding specificity of SREBPs is caused by a specific tyrosine in the conserved basic region of the DNA binding domain that corresponds to an arginine in all other bHLH proteins that recognize only E-boxes. Taken together the data suggest an evolutionary mechanism where a DNA binding protein along with its recognition site have coevolved to ensure maximal specificity and sensitivity in a crucial nutritional regulatory response |
doi_str_mv | 10.1073/pnas.95.9.4935 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_79822428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44644</jstor_id><sourcerecordid>44644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-80b5a9983064e58e3486efa69643a055bc6946ec2a9913bddd13f6dec1cc1c63</originalsourceid><addsrcrecordid>eNqFkc-LEzEUx4Moa61ePQhC8OCtNZn8aAJelvUnLHrY9RwymTfdlDQZk5lle_NPd4bWblcEIRDI9_N97-V9EXpJyZKSFXvXRVuWWiz1kmsmHqEZJZouJNfkMZoRUq0Wilf8KXpWyoYQooUiZ-hMC0kqImfo11UHzrfe-X6HfcTuJgUoPeQUcIb1EGzvU8SpxWuIgOGuy1DK9FTvsEtwm8Lwh3hoS3mHP3w7xxBgC7HHNjbY9wXXPjY-rnGXUw8-PkdPWhsKvDjcc3T96eP1xZfF5ffPXy_OLxdOMNEvFKmF1VoxIjkIBYwrCa2VWnJmiRC1k5pLcNUIUVY3TUNZKxtw1I1Hsjl6vy_bDfUWGjdOlG0wXfZbm3cmWW8eKtHfmHW6NRWhY8E5enuw5_RzGBdktr44CMFGSEMxK62qilfqvyCVbEWZnsA3f4GbNOQ4rmBqyaQUaoKWe8jlVEqG9jgwJWaK30zxGy2MNlP8o-H16TeP-CHvk_Em37168Jt2CKGHu_6k0D_BUX-11zdlTPoIcC45vze3Nhm7zr6YH1dU6xVRWlHNfgP2-Nip</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201366588</pqid></control><display><type>article</type><title>Specificity in cholesterol regulation of gene expression by coevolution of sterol regulatory DNA element and its binding protein</title><source>JSTOR Archive Collection A-Z Listing</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Athanikar, J.N. (University of Texas Southwestern, Dallas, TX.) ; Osborne, T.F</creator><creatorcontrib>Athanikar, J.N. (University of Texas Southwestern, Dallas, TX.) ; Osborne, T.F</creatorcontrib><description>When demand for cholesterol rises in mammalian cells, the sterol regulatory element (SRE) binding proteins (SREBPs) are released from their membrane anchor through proteolysis. Then, the N-terminal region enters the nucleus and activates genes of cholesterol uptake and biosynthesis. Basic helix-loop-helix (bHLH) proteins such as SREBPs bind to a palindromic DNA sequence called the E-box (5'-CANNTG-3'). However, SREBPs are special because they also bind direct repeat elements called SREs. Importantly, sterol regulation of all promoters studied thus far is mediated by SREBP binding only to SREs. To study the reason for this we converted the direct repeat SRE from the sterol-regulated low-density lipoprotein receptor promoter into an E-box. In this report we show that SREBPs are still able to bind and activate this promoter however, sterol regulation is lost. The results are consistent with the mutant promoter being a target for promiscuous activation by constitutively expressed E-box binding bHLH proteins that are not regulated by cholesterol. Kim and coworkers [Kim, J. B., Spotts, G. D., Halvorsen, Y.-D., Shih, H.-M., Ellenberger, T., Towle, H. C. and Spiegelman, B. M. (1995) Mol. Cell. Biol. 15, 2582-2588] demonstrated that the dual DNA binding specificity of SREBPs is caused by a specific tyrosine in the conserved basic region of the DNA binding domain that corresponds to an arginine in all other bHLH proteins that recognize only E-boxes. Taken together the data suggest an evolutionary mechanism where a DNA binding protein along with its recognition site have coevolved to ensure maximal specificity and sensitivity in a crucial nutritional regulatory response</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.95.9.4935</identifier><identifier>PMID: 9560206</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>25-HYDROXYCHOLESTEROL ; Animals ; Basic helix loop helix transcription factors ; BETA GALACTOSIDASE ; Binding Sites ; Biochemistry ; Biological Sciences ; CCAAT-Enhancer-Binding Proteins ; CELL CULTURE ; CELL LINES ; CHOLESTEROL ; Cholesterol - physiology ; Cholesterols ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA-Binding Proteins - metabolism ; DROSOPHILA ; Drosophila melanogaster ; Evolution ; GENE EXPRESSION ; Gene Expression Regulation ; GENES ; GENETIC REGULATION ; GENETIC TRANSFORMATION ; GENETICS ; Hep G2 cells ; Humans ; LDL receptors ; LIPOPROTEINS ; LOW DENSITY LIPOPROTEIN ; LUCIFERASE ; MANKIND ; MUTATION ; Nuclear Proteins - metabolism ; NUCLEOTIDE SEQUENCE ; OXIDOREDUCTASES ; Plasmids ; Promoter Regions, Genetic ; PROMOTERS ; Protein Binding ; Proteins ; RECEPTORS ; Receptors, LDL - genetics ; Recombinant Proteins ; REGULATORY SEQUENCES ; Regulatory Sequences, Nucleic Acid ; Repetitive Sequences, Nucleic Acid ; REPORTER GENES ; STEROL REGULATORY ELEMENT ; Sterol Regulatory Element Binding Protein 1 ; Sterols ; Structure-Activity Relationship ; TRANSCRIPTION FACTORS ; Transcription, Genetic ; Transfection</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1998-04, Vol.95 (9), p.4935-4940</ispartof><rights>Copyright 1993-1998 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Apr 28, 1998</rights><rights>Copyright © 1998, The National Academy of Sciences 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-80b5a9983064e58e3486efa69643a055bc6946ec2a9913bddd13f6dec1cc1c63</citedby><cites>FETCH-LOGICAL-c535t-80b5a9983064e58e3486efa69643a055bc6946ec2a9913bddd13f6dec1cc1c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/95/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44644$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44644$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9560206$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Athanikar, J.N. (University of Texas Southwestern, Dallas, TX.)</creatorcontrib><creatorcontrib>Osborne, T.F</creatorcontrib><title>Specificity in cholesterol regulation of gene expression by coevolution of sterol regulatory DNA element and its binding protein</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>When demand for cholesterol rises in mammalian cells, the sterol regulatory element (SRE) binding proteins (SREBPs) are released from their membrane anchor through proteolysis. Then, the N-terminal region enters the nucleus and activates genes of cholesterol uptake and biosynthesis. Basic helix-loop-helix (bHLH) proteins such as SREBPs bind to a palindromic DNA sequence called the E-box (5'-CANNTG-3'). However, SREBPs are special because they also bind direct repeat elements called SREs. Importantly, sterol regulation of all promoters studied thus far is mediated by SREBP binding only to SREs. To study the reason for this we converted the direct repeat SRE from the sterol-regulated low-density lipoprotein receptor promoter into an E-box. In this report we show that SREBPs are still able to bind and activate this promoter however, sterol regulation is lost. The results are consistent with the mutant promoter being a target for promiscuous activation by constitutively expressed E-box binding bHLH proteins that are not regulated by cholesterol. Kim and coworkers [Kim, J. B., Spotts, G. D., Halvorsen, Y.-D., Shih, H.-M., Ellenberger, T., Towle, H. C. and Spiegelman, B. M. (1995) Mol. Cell. Biol. 15, 2582-2588] demonstrated that the dual DNA binding specificity of SREBPs is caused by a specific tyrosine in the conserved basic region of the DNA binding domain that corresponds to an arginine in all other bHLH proteins that recognize only E-boxes. Taken together the data suggest an evolutionary mechanism where a DNA binding protein along with its recognition site have coevolved to ensure maximal specificity and sensitivity in a crucial nutritional regulatory response</description><subject>25-HYDROXYCHOLESTEROL</subject><subject>Animals</subject><subject>Basic helix loop helix transcription factors</subject><subject>BETA GALACTOSIDASE</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>CCAAT-Enhancer-Binding Proteins</subject><subject>CELL CULTURE</subject><subject>CELL LINES</subject><subject>CHOLESTEROL</subject><subject>Cholesterol - physiology</subject><subject>Cholesterols</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DROSOPHILA</subject><subject>Drosophila melanogaster</subject><subject>Evolution</subject><subject>GENE EXPRESSION</subject><subject>Gene Expression Regulation</subject><subject>GENES</subject><subject>GENETIC REGULATION</subject><subject>GENETIC TRANSFORMATION</subject><subject>GENETICS</subject><subject>Hep G2 cells</subject><subject>Humans</subject><subject>LDL receptors</subject><subject>LIPOPROTEINS</subject><subject>LOW DENSITY LIPOPROTEIN</subject><subject>LUCIFERASE</subject><subject>MANKIND</subject><subject>MUTATION</subject><subject>Nuclear Proteins - metabolism</subject><subject>NUCLEOTIDE SEQUENCE</subject><subject>OXIDOREDUCTASES</subject><subject>Plasmids</subject><subject>Promoter Regions, Genetic</subject><subject>PROMOTERS</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>RECEPTORS</subject><subject>Receptors, LDL - genetics</subject><subject>Recombinant Proteins</subject><subject>REGULATORY SEQUENCES</subject><subject>Regulatory Sequences, Nucleic Acid</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>REPORTER GENES</subject><subject>STEROL REGULATORY ELEMENT</subject><subject>Sterol Regulatory Element Binding Protein 1</subject><subject>Sterols</subject><subject>Structure-Activity Relationship</subject><subject>TRANSCRIPTION FACTORS</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc-LEzEUx4Moa61ePQhC8OCtNZn8aAJelvUnLHrY9RwymTfdlDQZk5lle_NPd4bWblcEIRDI9_N97-V9EXpJyZKSFXvXRVuWWiz1kmsmHqEZJZouJNfkMZoRUq0Wilf8KXpWyoYQooUiZ-hMC0kqImfo11UHzrfe-X6HfcTuJgUoPeQUcIb1EGzvU8SpxWuIgOGuy1DK9FTvsEtwm8Lwh3hoS3mHP3w7xxBgC7HHNjbY9wXXPjY-rnGXUw8-PkdPWhsKvDjcc3T96eP1xZfF5ffPXy_OLxdOMNEvFKmF1VoxIjkIBYwrCa2VWnJmiRC1k5pLcNUIUVY3TUNZKxtw1I1Hsjl6vy_bDfUWGjdOlG0wXfZbm3cmWW8eKtHfmHW6NRWhY8E5enuw5_RzGBdktr44CMFGSEMxK62qilfqvyCVbEWZnsA3f4GbNOQ4rmBqyaQUaoKWe8jlVEqG9jgwJWaK30zxGy2MNlP8o-H16TeP-CHvk_Em37168Jt2CKGHu_6k0D_BUX-11zdlTPoIcC45vze3Nhm7zr6YH1dU6xVRWlHNfgP2-Nip</recordid><startdate>19980428</startdate><enddate>19980428</enddate><creator>Athanikar, J.N. (University of Texas Southwestern, Dallas, TX.)</creator><creator>Osborne, T.F</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19980428</creationdate><title>Specificity in cholesterol regulation of gene expression by coevolution of sterol regulatory DNA element and its binding protein</title><author>Athanikar, J.N. (University of Texas Southwestern, Dallas, TX.) ; Osborne, T.F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-80b5a9983064e58e3486efa69643a055bc6946ec2a9913bddd13f6dec1cc1c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>25-HYDROXYCHOLESTEROL</topic><topic>Animals</topic><topic>Basic helix loop helix transcription factors</topic><topic>BETA GALACTOSIDASE</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>CCAAT-Enhancer-Binding Proteins</topic><topic>CELL CULTURE</topic><topic>CELL LINES</topic><topic>CHOLESTEROL</topic><topic>Cholesterol - physiology</topic><topic>Cholesterols</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DROSOPHILA</topic><topic>Drosophila melanogaster</topic><topic>Evolution</topic><topic>GENE EXPRESSION</topic><topic>Gene Expression Regulation</topic><topic>GENES</topic><topic>GENETIC REGULATION</topic><topic>GENETIC TRANSFORMATION</topic><topic>GENETICS</topic><topic>Hep G2 cells</topic><topic>Humans</topic><topic>LDL receptors</topic><topic>LIPOPROTEINS</topic><topic>LOW DENSITY LIPOPROTEIN</topic><topic>LUCIFERASE</topic><topic>MANKIND</topic><topic>MUTATION</topic><topic>Nuclear Proteins - metabolism</topic><topic>NUCLEOTIDE SEQUENCE</topic><topic>OXIDOREDUCTASES</topic><topic>Plasmids</topic><topic>Promoter Regions, Genetic</topic><topic>PROMOTERS</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>RECEPTORS</topic><topic>Receptors, LDL - genetics</topic><topic>Recombinant Proteins</topic><topic>REGULATORY SEQUENCES</topic><topic>Regulatory Sequences, Nucleic Acid</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>REPORTER GENES</topic><topic>STEROL REGULATORY ELEMENT</topic><topic>Sterol Regulatory Element Binding Protein 1</topic><topic>Sterols</topic><topic>Structure-Activity Relationship</topic><topic>TRANSCRIPTION FACTORS</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athanikar, J.N. (University of Texas Southwestern, Dallas, TX.)</creatorcontrib><creatorcontrib>Osborne, T.F</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athanikar, J.N. (University of Texas Southwestern, Dallas, TX.)</au><au>Osborne, T.F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specificity in cholesterol regulation of gene expression by coevolution of sterol regulatory DNA element and its binding protein</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1998-04-28</date><risdate>1998</risdate><volume>95</volume><issue>9</issue><spage>4935</spage><epage>4940</epage><pages>4935-4940</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>When demand for cholesterol rises in mammalian cells, the sterol regulatory element (SRE) binding proteins (SREBPs) are released from their membrane anchor through proteolysis. Then, the N-terminal region enters the nucleus and activates genes of cholesterol uptake and biosynthesis. Basic helix-loop-helix (bHLH) proteins such as SREBPs bind to a palindromic DNA sequence called the E-box (5'-CANNTG-3'). However, SREBPs are special because they also bind direct repeat elements called SREs. Importantly, sterol regulation of all promoters studied thus far is mediated by SREBP binding only to SREs. To study the reason for this we converted the direct repeat SRE from the sterol-regulated low-density lipoprotein receptor promoter into an E-box. In this report we show that SREBPs are still able to bind and activate this promoter however, sterol regulation is lost. The results are consistent with the mutant promoter being a target for promiscuous activation by constitutively expressed E-box binding bHLH proteins that are not regulated by cholesterol. Kim and coworkers [Kim, J. B., Spotts, G. D., Halvorsen, Y.-D., Shih, H.-M., Ellenberger, T., Towle, H. C. and Spiegelman, B. M. (1995) Mol. Cell. Biol. 15, 2582-2588] demonstrated that the dual DNA binding specificity of SREBPs is caused by a specific tyrosine in the conserved basic region of the DNA binding domain that corresponds to an arginine in all other bHLH proteins that recognize only E-boxes. Taken together the data suggest an evolutionary mechanism where a DNA binding protein along with its recognition site have coevolved to ensure maximal specificity and sensitivity in a crucial nutritional regulatory response</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9560206</pmid><doi>10.1073/pnas.95.9.4935</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1998-04, Vol.95 (9), p.4935-4940 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_79822428 |
source | JSTOR Archive Collection A-Z Listing; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 25-HYDROXYCHOLESTEROL Animals Basic helix loop helix transcription factors BETA GALACTOSIDASE Binding Sites Biochemistry Biological Sciences CCAAT-Enhancer-Binding Proteins CELL CULTURE CELL LINES CHOLESTEROL Cholesterol - physiology Cholesterols Deoxyribonucleic acid DNA DNA - metabolism DNA-Binding Proteins - metabolism DROSOPHILA Drosophila melanogaster Evolution GENE EXPRESSION Gene Expression Regulation GENES GENETIC REGULATION GENETIC TRANSFORMATION GENETICS Hep G2 cells Humans LDL receptors LIPOPROTEINS LOW DENSITY LIPOPROTEIN LUCIFERASE MANKIND MUTATION Nuclear Proteins - metabolism NUCLEOTIDE SEQUENCE OXIDOREDUCTASES Plasmids Promoter Regions, Genetic PROMOTERS Protein Binding Proteins RECEPTORS Receptors, LDL - genetics Recombinant Proteins REGULATORY SEQUENCES Regulatory Sequences, Nucleic Acid Repetitive Sequences, Nucleic Acid REPORTER GENES STEROL REGULATORY ELEMENT Sterol Regulatory Element Binding Protein 1 Sterols Structure-Activity Relationship TRANSCRIPTION FACTORS Transcription, Genetic Transfection |
title | Specificity in cholesterol regulation of gene expression by coevolution of sterol regulatory DNA element and its binding protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T17%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specificity%20in%20cholesterol%20regulation%20of%20gene%20expression%20by%20coevolution%20of%20sterol%20regulatory%20DNA%20element%20and%20its%20binding%20protein&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Athanikar,%20J.N.%20(University%20of%20Texas%20Southwestern,%20Dallas,%20TX.)&rft.date=1998-04-28&rft.volume=95&rft.issue=9&rft.spage=4935&rft.epage=4940&rft.pages=4935-4940&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.95.9.4935&rft_dat=%3Cjstor_proqu%3E44644%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201366588&rft_id=info:pmid/9560206&rft_jstor_id=44644&rfr_iscdi=true |