Cellular control lies in the balance of forces

Mechanical tension generated within the cytoskeleton of living cells is emerging as a critical regulator of biological function in diverse situations ranging from the control of chromosome movement to the morphogenesis of the vertebrate brain. In this article, we review recent advances that have bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in cell biology 1998-04, Vol.10 (2), p.232-239
Hauptverfasser: Chicurel, Marina E, Chen, Christopher S, Ingber, Donald E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 2
container_start_page 232
container_title Current opinion in cell biology
container_volume 10
creator Chicurel, Marina E
Chen, Christopher S
Ingber, Donald E
description Mechanical tension generated within the cytoskeleton of living cells is emerging as a critical regulator of biological function in diverse situations ranging from the control of chromosome movement to the morphogenesis of the vertebrate brain. In this article, we review recent advances that have been made in terms of understanding how cells generate, transmit and sense mechanical tension, as well as how they use these forces to control their shape and behavior. An integrated view of cell regulation that incorporates mechanics and structure as well as chemistry is beginning to emerge.
doi_str_mv 10.1016/S0955-0674(98)80145-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79818073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955067498801452</els_id><sourcerecordid>79818073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-fa2dd3c073c4aa0a6a5b7ba982d4a5337f3f4325521dedecdc9f6c26280a979b3</originalsourceid><addsrcrecordid>eNqFkE1LwzAYx4Moc06_gYOeRA-dT9KkSU4iwzcYeFDPIU1SrHTNTFrBb2-2jl09PYf_y_Pnh9AcwwIDLm_fQDKWQ8nptRQ3AjBlOTlCUyy4zIFiOEbTg-UUncX4BQAlEDlBE8lKLCifosXSte3Q6pAZ3_XBt1nbuJg1XdZ_uqzSre6My3yd1T4YF8_RSa3b6C72d4Y-Hh_el8_56vXpZXm_yg3FpM9rTawtDPDCUK1Bl5pVvNJSEEs1KwpeFzUtCGMEW2edsUbWpSElEaAll1UxQ1dj7yb478HFXq2baNJU3Tk_RMWlwCLV_2vEZSE5JywZ2Wg0wccYXK02oVnr8KswqC1QtQOqtrSUFGoHVJGUm-8fDNXa2UNqTzDpl6Pe6ahVQhgVAaCAOeFkG78bZZdo_TQuqGgal5jaJjjTK-ubfwb8ASX2jGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16397725</pqid></control><display><type>article</type><title>Cellular control lies in the balance of forces</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>NASA Technical Reports Server</source><creator>Chicurel, Marina E ; Chen, Christopher S ; Ingber, Donald E</creator><creatorcontrib>Chicurel, Marina E ; Chen, Christopher S ; Ingber, Donald E</creatorcontrib><description>Mechanical tension generated within the cytoskeleton of living cells is emerging as a critical regulator of biological function in diverse situations ranging from the control of chromosome movement to the morphogenesis of the vertebrate brain. In this article, we review recent advances that have been made in terms of understanding how cells generate, transmit and sense mechanical tension, as well as how they use these forces to control their shape and behavior. An integrated view of cell regulation that incorporates mechanics and structure as well as chemistry is beginning to emerge.</description><identifier>ISSN: 0955-0674</identifier><identifier>EISSN: 1879-0410</identifier><identifier>DOI: 10.1016/S0955-0674(98)80145-2</identifier><identifier>PMID: 9561847</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier Ltd</publisher><subject>Animals ; ECM extracellular matrix ; FAC focal adhesion complex ; Humans ; Life Sciences (General) ; Models, Biological ; Signal Transduction ; Space life sciences ; Stress, Mechanical</subject><ispartof>Current opinion in cell biology, 1998-04, Vol.10 (2), p.232-239</ispartof><rights>1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-fa2dd3c073c4aa0a6a5b7ba982d4a5337f3f4325521dedecdc9f6c26280a979b3</citedby><cites>FETCH-LOGICAL-c412t-fa2dd3c073c4aa0a6a5b7ba982d4a5337f3f4325521dedecdc9f6c26280a979b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0955-0674(98)80145-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9561847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chicurel, Marina E</creatorcontrib><creatorcontrib>Chen, Christopher S</creatorcontrib><creatorcontrib>Ingber, Donald E</creatorcontrib><title>Cellular control lies in the balance of forces</title><title>Current opinion in cell biology</title><addtitle>Curr Opin Cell Biol</addtitle><description>Mechanical tension generated within the cytoskeleton of living cells is emerging as a critical regulator of biological function in diverse situations ranging from the control of chromosome movement to the morphogenesis of the vertebrate brain. In this article, we review recent advances that have been made in terms of understanding how cells generate, transmit and sense mechanical tension, as well as how they use these forces to control their shape and behavior. An integrated view of cell regulation that incorporates mechanics and structure as well as chemistry is beginning to emerge.</description><subject>Animals</subject><subject>ECM extracellular matrix</subject><subject>FAC focal adhesion complex</subject><subject>Humans</subject><subject>Life Sciences (General)</subject><subject>Models, Biological</subject><subject>Signal Transduction</subject><subject>Space life sciences</subject><subject>Stress, Mechanical</subject><issn>0955-0674</issn><issn>1879-0410</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>EIF</sourceid><recordid>eNqFkE1LwzAYx4Moc06_gYOeRA-dT9KkSU4iwzcYeFDPIU1SrHTNTFrBb2-2jl09PYf_y_Pnh9AcwwIDLm_fQDKWQ8nptRQ3AjBlOTlCUyy4zIFiOEbTg-UUncX4BQAlEDlBE8lKLCifosXSte3Q6pAZ3_XBt1nbuJg1XdZ_uqzSre6My3yd1T4YF8_RSa3b6C72d4Y-Hh_el8_56vXpZXm_yg3FpM9rTawtDPDCUK1Bl5pVvNJSEEs1KwpeFzUtCGMEW2edsUbWpSElEaAll1UxQ1dj7yb478HFXq2baNJU3Tk_RMWlwCLV_2vEZSE5JywZ2Wg0wccYXK02oVnr8KswqC1QtQOqtrSUFGoHVJGUm-8fDNXa2UNqTzDpl6Pe6ahVQhgVAaCAOeFkG78bZZdo_TQuqGgal5jaJjjTK-ubfwb8ASX2jGY</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Chicurel, Marina E</creator><creator>Chen, Christopher S</creator><creator>Ingber, Donald E</creator><general>Elsevier Ltd</general><scope>CYE</scope><scope>CYI</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19980401</creationdate><title>Cellular control lies in the balance of forces</title><author>Chicurel, Marina E ; Chen, Christopher S ; Ingber, Donald E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-fa2dd3c073c4aa0a6a5b7ba982d4a5337f3f4325521dedecdc9f6c26280a979b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>ECM extracellular matrix</topic><topic>FAC focal adhesion complex</topic><topic>Humans</topic><topic>Life Sciences (General)</topic><topic>Models, Biological</topic><topic>Signal Transduction</topic><topic>Space life sciences</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chicurel, Marina E</creatorcontrib><creatorcontrib>Chen, Christopher S</creatorcontrib><creatorcontrib>Ingber, Donald E</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chicurel, Marina E</au><au>Chen, Christopher S</au><au>Ingber, Donald E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular control lies in the balance of forces</atitle><jtitle>Current opinion in cell biology</jtitle><addtitle>Curr Opin Cell Biol</addtitle><date>1998-04-01</date><risdate>1998</risdate><volume>10</volume><issue>2</issue><spage>232</spage><epage>239</epage><pages>232-239</pages><issn>0955-0674</issn><eissn>1879-0410</eissn><abstract>Mechanical tension generated within the cytoskeleton of living cells is emerging as a critical regulator of biological function in diverse situations ranging from the control of chromosome movement to the morphogenesis of the vertebrate brain. In this article, we review recent advances that have been made in terms of understanding how cells generate, transmit and sense mechanical tension, as well as how they use these forces to control their shape and behavior. An integrated view of cell regulation that incorporates mechanics and structure as well as chemistry is beginning to emerge.</abstract><cop>Legacy CDMS</cop><pub>Elsevier Ltd</pub><pmid>9561847</pmid><doi>10.1016/S0955-0674(98)80145-2</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-0674
ispartof Current opinion in cell biology, 1998-04, Vol.10 (2), p.232-239
issn 0955-0674
1879-0410
language eng
recordid cdi_proquest_miscellaneous_79818073
source MEDLINE; Elsevier ScienceDirect Journals; NASA Technical Reports Server
subjects Animals
ECM extracellular matrix
FAC focal adhesion complex
Humans
Life Sciences (General)
Models, Biological
Signal Transduction
Space life sciences
Stress, Mechanical
title Cellular control lies in the balance of forces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20control%20lies%20in%20the%20balance%20of%20forces&rft.jtitle=Current%20opinion%20in%20cell%20biology&rft.au=Chicurel,%20Marina%20E&rft.date=1998-04-01&rft.volume=10&rft.issue=2&rft.spage=232&rft.epage=239&rft.pages=232-239&rft.issn=0955-0674&rft.eissn=1879-0410&rft_id=info:doi/10.1016/S0955-0674(98)80145-2&rft_dat=%3Cproquest_cross%3E79818073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16397725&rft_id=info:pmid/9561847&rft_els_id=S0955067498801452&rfr_iscdi=true