Inactivation of Voltage-Gated Cardiac K+ Channels

Inactivation is the process by which an open channel enters a stable nonconducting conformation after a depolarizing change in membrane potential. Inactivation is a widespread property of many different types of voltage-gated ion channels. Recent advances in the molecular biology of K channels have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 1998-04, Vol.82 (7), p.739-750
Hauptverfasser: Rasmusson, Randall L, Morales, Michael J, Wang, Shimin, Liu, Shuguang, Campbell, Donald L, Brahmajothi, Mulugu V, Strauss, Harold C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inactivation is the process by which an open channel enters a stable nonconducting conformation after a depolarizing change in membrane potential. Inactivation is a widespread property of many different types of voltage-gated ion channels. Recent advances in the molecular biology of K channels have elucidated two mechanistically distinct types of inactivation, N-type and C-type. N-type inactivation involves occlusion of the intracellular mouth of the pore through binding of a short segment of residues at the extreme N-terminal. In contrast to this “tethered ball” mechanism of N-type inactivation, C-type inactivation involves movement of conserved core domain residues that result in closure of the external mouth of the pore. Although C-type inactivation can show rapid kinetics that approach those observed for N-type inactivation, it is often thought of as a slowly developing and slowly recovering process. Current models of C-type inactivation also suggest that this process involves a relatively localized change in conformation of residues near the external mouth of the permeation pathway. The rate of C-type inactivation and recovery can be strongly influenced by other factors, such as N-type inactivation, drug binding, and changes in [K]o. These interactions make C-type inactivation an important biophysical process in determining such physiologically important properties as refractoriness and drug binding. C-type inactivation is currently viewed as arising from small-scale rearrangements at the external mouth of the pore. This review will examine the multiplicity of interactions of C-type inactivation with N-terminal-mediated inactivation and drug binding that suggest that our current view of C-type inactivation is incomplete. This review will suggest that C-type inactivation must involve larger-scale movements of transmembrane-spanning domains and that such movements contribute to the diversity of kinetic properties observed for C-type inactivation. (Circ Res. 1998;82:739-750.)
ISSN:0009-7330
1524-4571
DOI:10.1161/01.res.82.7.739