Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers

Nitric oxide (NO) is a pluripotent regulatory molecule, yet the molecular mechanisms by which it exerts its effects are largely unknown. Few physiologic target molecules of NO have been identified, and even for these, the modifications caused by NO remain uncharacterized. Human glutathione reductase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Structural Biology 1998-04, Vol.5 (4), p.267-271
Hauptverfasser: Becker, Katja, Savvides, Savvas N, Keese, Michael, Schirmer, R. Heiner, Karplus, P. Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 4
container_start_page 267
container_title Nature Structural Biology
container_volume 5
creator Becker, Katja
Savvides, Savvas N
Keese, Michael
Schirmer, R. Heiner
Karplus, P. Andrew
description Nitric oxide (NO) is a pluripotent regulatory molecule, yet the molecular mechanisms by which it exerts its effects are largely unknown. Few physiologic target molecules of NO have been identified, and even for these, the modifications caused by NO remain uncharacterized. Human glutathione reductase (hGR), a central enzyme of cellular antioxidant defense, is inhibited by S-nitrosoglutathione (GSNO) and by diglutathionyl-dinitroso-iron (DNIC-[GSH] 2 ), two in vivo transport forms of NO. Here, crystal structures of hGR inactivated by GSNO and DNIC-[GSH] 2 at 1.7 Å resolution provide the first picture of enzyme inactivation by NO-carriers: in GSNO-modified hGR, the active site residue Cys 63 is oxidized to an unusually stable cysteine sulfenic acid (R-SOH), whereas modification with DNIC-[GSH] 2 oxidizes Cys 63 to a cysteine sulfinic acid (R-SO 2 H). Our results illustrate that various forms of NO can mediate distinct chemistry, and that sulfhydryl oxidation must be considered as a major mechanism of NO action.
doi_str_mv 10.1038/nsb0498-267
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79788979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79788979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-3c8b2a17806e72e3b94b1c8e78dd866584e0355fabada6a6bc319ad7ce76ede53</originalsourceid><addsrcrecordid>eNp1kc1LwzAYh4Moc05PnoV68aLVpGmT9ChjfuBwFwVvJU3frpEumUkr1r_eSsvw4imH5-GB9xeETgm-JpiKG-NzHKcijBjfQ9OIUhJSlrztoynBPAoFZeIQHXn_jjGJY5xO0CRNYhaRZIqeFua720CgjVSN_pSNtiZoKmfbdRX4ti6rrnBdHdgvXQww74Jt1Xlta7vWKnhehUo6p8H5Y3RQytrDyfjO0Ovd4mX-EC5X94_z22WoaMybkCqRR5JwgRnwCGiexjlRArgoCsFYImLANElKmctCMslyRUkqC66AMyggoTN0MXS3zn604Jtso72CupYGbOsznnIhUp724uUgKme9d1BmW6c30nUZwdnvdNk4XdZP19tnY7bNN1Ds3HGrnl8N3PfErMFl77Z1pr_0n9z5oBvZtA52uT-_RX8ApumFmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79788979</pqid></control><display><type>article</type><title>Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Becker, Katja ; Savvides, Savvas N ; Keese, Michael ; Schirmer, R. Heiner ; Karplus, P. Andrew</creator><creatorcontrib>Becker, Katja ; Savvides, Savvas N ; Keese, Michael ; Schirmer, R. Heiner ; Karplus, P. Andrew</creatorcontrib><description>Nitric oxide (NO) is a pluripotent regulatory molecule, yet the molecular mechanisms by which it exerts its effects are largely unknown. Few physiologic target molecules of NO have been identified, and even for these, the modifications caused by NO remain uncharacterized. Human glutathione reductase (hGR), a central enzyme of cellular antioxidant defense, is inhibited by S-nitrosoglutathione (GSNO) and by diglutathionyl-dinitroso-iron (DNIC-[GSH] 2 ), two in vivo transport forms of NO. Here, crystal structures of hGR inactivated by GSNO and DNIC-[GSH] 2 at 1.7 Å resolution provide the first picture of enzyme inactivation by NO-carriers: in GSNO-modified hGR, the active site residue Cys 63 is oxidized to an unusually stable cysteine sulfenic acid (R-SOH), whereas modification with DNIC-[GSH] 2 oxidizes Cys 63 to a cysteine sulfinic acid (R-SO 2 H). Our results illustrate that various forms of NO can mediate distinct chemistry, and that sulfhydryl oxidation must be considered as a major mechanism of NO action.</description><identifier>ISSN: 1072-8368</identifier><identifier>EISSN: 2331-365X</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsb0498-267</identifier><identifier>PMID: 9546215</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Amino Acid Sequence ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; Computer Simulation ; Crystallography, X-Ray ; Cysteine ; Dithiothreitol - pharmacology ; Glutathione - analogs &amp; derivatives ; Glutathione - chemistry ; Glutathione - pharmacology ; Glutathione Reductase - antagonists &amp; inhibitors ; Glutathione Reductase - chemistry ; Humans ; letter ; Life Sciences ; Membrane Biology ; Models, Molecular ; Molecular Conformation ; Molecular Sequence Data ; Nitric Oxide - chemistry ; Nitric Oxide - pharmacology ; Nitroso Compounds - chemistry ; Nitroso Compounds - pharmacology ; Protein Conformation ; Protein Structure ; S-Nitrosoglutathione ; Software</subject><ispartof>Nature Structural Biology, 1998-04, Vol.5 (4), p.267-271</ispartof><rights>Springer Nature America, Inc. 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-3c8b2a17806e72e3b94b1c8e78dd866584e0355fabada6a6bc319ad7ce76ede53</citedby><cites>FETCH-LOGICAL-c347t-3c8b2a17806e72e3b94b1c8e78dd866584e0355fabada6a6bc319ad7ce76ede53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nsb0498-267$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nsb0498-267$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9546215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Katja</creatorcontrib><creatorcontrib>Savvides, Savvas N</creatorcontrib><creatorcontrib>Keese, Michael</creatorcontrib><creatorcontrib>Schirmer, R. Heiner</creatorcontrib><creatorcontrib>Karplus, P. Andrew</creatorcontrib><title>Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers</title><title>Nature Structural Biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Biol</addtitle><description>Nitric oxide (NO) is a pluripotent regulatory molecule, yet the molecular mechanisms by which it exerts its effects are largely unknown. Few physiologic target molecules of NO have been identified, and even for these, the modifications caused by NO remain uncharacterized. Human glutathione reductase (hGR), a central enzyme of cellular antioxidant defense, is inhibited by S-nitrosoglutathione (GSNO) and by diglutathionyl-dinitroso-iron (DNIC-[GSH] 2 ), two in vivo transport forms of NO. Here, crystal structures of hGR inactivated by GSNO and DNIC-[GSH] 2 at 1.7 Å resolution provide the first picture of enzyme inactivation by NO-carriers: in GSNO-modified hGR, the active site residue Cys 63 is oxidized to an unusually stable cysteine sulfenic acid (R-SOH), whereas modification with DNIC-[GSH] 2 oxidizes Cys 63 to a cysteine sulfinic acid (R-SO 2 H). Our results illustrate that various forms of NO can mediate distinct chemistry, and that sulfhydryl oxidation must be considered as a major mechanism of NO action.</description><subject>Amino Acid Sequence</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Computer Simulation</subject><subject>Crystallography, X-Ray</subject><subject>Cysteine</subject><subject>Dithiothreitol - pharmacology</subject><subject>Glutathione - analogs &amp; derivatives</subject><subject>Glutathione - chemistry</subject><subject>Glutathione - pharmacology</subject><subject>Glutathione Reductase - antagonists &amp; inhibitors</subject><subject>Glutathione Reductase - chemistry</subject><subject>Humans</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Molecular Sequence Data</subject><subject>Nitric Oxide - chemistry</subject><subject>Nitric Oxide - pharmacology</subject><subject>Nitroso Compounds - chemistry</subject><subject>Nitroso Compounds - pharmacology</subject><subject>Protein Conformation</subject><subject>Protein Structure</subject><subject>S-Nitrosoglutathione</subject><subject>Software</subject><issn>1072-8368</issn><issn>2331-365X</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1LwzAYh4Moc05PnoV68aLVpGmT9ChjfuBwFwVvJU3frpEumUkr1r_eSsvw4imH5-GB9xeETgm-JpiKG-NzHKcijBjfQ9OIUhJSlrztoynBPAoFZeIQHXn_jjGJY5xO0CRNYhaRZIqeFua720CgjVSN_pSNtiZoKmfbdRX4ti6rrnBdHdgvXQww74Jt1Xlta7vWKnhehUo6p8H5Y3RQytrDyfjO0Ovd4mX-EC5X94_z22WoaMybkCqRR5JwgRnwCGiexjlRArgoCsFYImLANElKmctCMslyRUkqC66AMyggoTN0MXS3zn604Jtso72CupYGbOsznnIhUp724uUgKme9d1BmW6c30nUZwdnvdNk4XdZP19tnY7bNN1Ds3HGrnl8N3PfErMFl77Z1pr_0n9z5oBvZtA52uT-_RX8ApumFmQ</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Becker, Katja</creator><creator>Savvides, Savvas N</creator><creator>Keese, Michael</creator><creator>Schirmer, R. Heiner</creator><creator>Karplus, P. Andrew</creator><general>Nature Publishing Group US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980401</creationdate><title>Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers</title><author>Becker, Katja ; Savvides, Savvas N ; Keese, Michael ; Schirmer, R. Heiner ; Karplus, P. Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-3c8b2a17806e72e3b94b1c8e78dd866584e0355fabada6a6bc319ad7ce76ede53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Amino Acid Sequence</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Computer Simulation</topic><topic>Crystallography, X-Ray</topic><topic>Cysteine</topic><topic>Dithiothreitol - pharmacology</topic><topic>Glutathione - analogs &amp; derivatives</topic><topic>Glutathione - chemistry</topic><topic>Glutathione - pharmacology</topic><topic>Glutathione Reductase - antagonists &amp; inhibitors</topic><topic>Glutathione Reductase - chemistry</topic><topic>Humans</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Molecular Sequence Data</topic><topic>Nitric Oxide - chemistry</topic><topic>Nitric Oxide - pharmacology</topic><topic>Nitroso Compounds - chemistry</topic><topic>Nitroso Compounds - pharmacology</topic><topic>Protein Conformation</topic><topic>Protein Structure</topic><topic>S-Nitrosoglutathione</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Katja</creatorcontrib><creatorcontrib>Savvides, Savvas N</creatorcontrib><creatorcontrib>Keese, Michael</creatorcontrib><creatorcontrib>Schirmer, R. Heiner</creatorcontrib><creatorcontrib>Karplus, P. Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Structural Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Katja</au><au>Savvides, Savvas N</au><au>Keese, Michael</au><au>Schirmer, R. Heiner</au><au>Karplus, P. Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers</atitle><jtitle>Nature Structural Biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Biol</addtitle><date>1998-04-01</date><risdate>1998</risdate><volume>5</volume><issue>4</issue><spage>267</spage><epage>271</epage><pages>267-271</pages><issn>1072-8368</issn><eissn>2331-365X</eissn><eissn>1545-9985</eissn><abstract>Nitric oxide (NO) is a pluripotent regulatory molecule, yet the molecular mechanisms by which it exerts its effects are largely unknown. Few physiologic target molecules of NO have been identified, and even for these, the modifications caused by NO remain uncharacterized. Human glutathione reductase (hGR), a central enzyme of cellular antioxidant defense, is inhibited by S-nitrosoglutathione (GSNO) and by diglutathionyl-dinitroso-iron (DNIC-[GSH] 2 ), two in vivo transport forms of NO. Here, crystal structures of hGR inactivated by GSNO and DNIC-[GSH] 2 at 1.7 Å resolution provide the first picture of enzyme inactivation by NO-carriers: in GSNO-modified hGR, the active site residue Cys 63 is oxidized to an unusually stable cysteine sulfenic acid (R-SOH), whereas modification with DNIC-[GSH] 2 oxidizes Cys 63 to a cysteine sulfinic acid (R-SO 2 H). Our results illustrate that various forms of NO can mediate distinct chemistry, and that sulfhydryl oxidation must be considered as a major mechanism of NO action.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>9546215</pmid><doi>10.1038/nsb0498-267</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-8368
ispartof Nature Structural Biology, 1998-04, Vol.5 (4), p.267-271
issn 1072-8368
2331-365X
1545-9985
language eng
recordid cdi_proquest_miscellaneous_79788979
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Amino Acid Sequence
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
Computer Simulation
Crystallography, X-Ray
Cysteine
Dithiothreitol - pharmacology
Glutathione - analogs & derivatives
Glutathione - chemistry
Glutathione - pharmacology
Glutathione Reductase - antagonists & inhibitors
Glutathione Reductase - chemistry
Humans
letter
Life Sciences
Membrane Biology
Models, Molecular
Molecular Conformation
Molecular Sequence Data
Nitric Oxide - chemistry
Nitric Oxide - pharmacology
Nitroso Compounds - chemistry
Nitroso Compounds - pharmacology
Protein Conformation
Protein Structure
S-Nitrosoglutathione
Software
title Enzyme inactivation through sulfhydryl oxidation by physiologic NO-carriers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enzyme%20inactivation%20through%20sulfhydryl%20oxidation%20by%20physiologic%20NO-carriers&rft.jtitle=Nature%20Structural%20Biology&rft.au=Becker,%20Katja&rft.date=1998-04-01&rft.volume=5&rft.issue=4&rft.spage=267&rft.epage=271&rft.pages=267-271&rft.issn=1072-8368&rft.eissn=2331-365X&rft_id=info:doi/10.1038/nsb0498-267&rft_dat=%3Cproquest_cross%3E79788979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79788979&rft_id=info:pmid/9546215&rfr_iscdi=true