Diffraction-Based Cell Detection Using a Microcontact Printed Antibody Grating

An optical detector has been fabricated that is specific for targeted bacterial cells, by stamping an antibody grating pattern on a silicon surface. The antibody grating alone produces insignificant optical diffraction, but upon immunocapture of cells, the optical phase change produces a diffraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 1998-03, Vol.70 (6), p.1108-1111
Hauptverfasser: St. John, Pamela M, Davis, Robert, Cady, Nathan, Czajka, John, Batt, Carl A, Craighead, Harold G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1111
container_issue 6
container_start_page 1108
container_title Analytical chemistry (Washington)
container_volume 70
creator St. John, Pamela M
Davis, Robert
Cady, Nathan
Czajka, John
Batt, Carl A
Craighead, Harold G
description An optical detector has been fabricated that is specific for targeted bacterial cells, by stamping an antibody grating pattern on a silicon surface. The antibody grating alone produces insignificant optical diffraction, but upon immunocapture of cells, the optical phase change produces a diffraction pattern. This technique eliminates much of the surface modifications and the secondary immunochemical or enzyme-linked steps that are common in immunoassays. Microcontact printing provides an alternative to previously reported photolithographic-mediated antibody patterning processes and uses a photolithographic process simply to produce the elastomeric stamp. We have stamped antibodies directly onto clean native oxide silicon substrates with no other chemical surface treatments. Direct binding of the antibodies to the silicon occurs in a way that still allows them to function and selectively bind antigen. The performance of the sensor was evaluated by capturing Escherichia coli O157:H7 cells on the antibody-stamped lines and measuring the intensity of the first-order diffraction beam resulting from the attachment of cells. The diffraction intensity increases in proportion to the cell density bound on the surface.
doi_str_mv 10.1021/ac9711302
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79763566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79763566</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-ca394bd113f74f950565aafbac6b5570fcec989e037e319624950be725fa3d9b3</originalsourceid><addsrcrecordid>eNpl0F1LHDEUBuAgLXb9uPAHFIZSC72Y9iSZJJtLXetYsCp0xctwJpOU2N0Zm2RB_32ju2yhXgVyHpL3vIQcUfhCgdGvaLWilAPbIRMqGNRyOmVvyAQAeM0UwDuyl9I9AKVA5S7Z1YKXGZuQq7PgfUSbwzjUp5hcX83cYlGduexeLqvbFIZfFVY_go2jHYdccHUTw5CLPRly6Mb-qWoj5uIOyFuPi-QON-c-uT3_Np9d1JfX7ffZyWWNjYJcW-S66foS2avGawFCCkTfoZWdEAq8dVZPtQOuHKdasqaYzikmPPJed3yffFq_-xDHPyuXslmGZEtwHNy4SkZpJbmQssAP_8H7cRWHks0wqqZNIwQU9HmNyoYpRefNQwxLjE-Ggnku2GwLLvb95sFVt3T9Vm4aLfOPmzkmi4vS7WBD2jLGOKXN85f1moWU3eN2jPG3kYorYeY3P81VS-90OxemLf547dGmfyu8jvcXUoCbIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217844550</pqid></control><display><type>article</type><title>Diffraction-Based Cell Detection Using a Microcontact Printed Antibody Grating</title><source>ACS Publications</source><source>MEDLINE</source><creator>St. John, Pamela M ; Davis, Robert ; Cady, Nathan ; Czajka, John ; Batt, Carl A ; Craighead, Harold G</creator><creatorcontrib>St. John, Pamela M ; Davis, Robert ; Cady, Nathan ; Czajka, John ; Batt, Carl A ; Craighead, Harold G</creatorcontrib><description>An optical detector has been fabricated that is specific for targeted bacterial cells, by stamping an antibody grating pattern on a silicon surface. The antibody grating alone produces insignificant optical diffraction, but upon immunocapture of cells, the optical phase change produces a diffraction pattern. This technique eliminates much of the surface modifications and the secondary immunochemical or enzyme-linked steps that are common in immunoassays. Microcontact printing provides an alternative to previously reported photolithographic-mediated antibody patterning processes and uses a photolithographic process simply to produce the elastomeric stamp. We have stamped antibodies directly onto clean native oxide silicon substrates with no other chemical surface treatments. Direct binding of the antibodies to the silicon occurs in a way that still allows them to function and selectively bind antigen. The performance of the sensor was evaluated by capturing Escherichia coli O157:H7 cells on the antibody-stamped lines and measuring the intensity of the first-order diffraction beam resulting from the attachment of cells. The diffraction intensity increases in proportion to the cell density bound on the surface.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac9711302</identifier><identifier>PMID: 9530002</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Antibodies ; Bacteria ; Biochemistry ; Biological and medical sciences ; Biosensing Techniques ; Biosensors ; Biotechnology ; Cells ; Escherichia coli O157 - isolation &amp; purification ; Fundamental and applied biological sciences. Psychology ; Methods. Procedures. Technologies ; Microscopy, Atomic Force ; Optics ; Others ; Various methods and equipments</subject><ispartof>Analytical chemistry (Washington), 1998-03, Vol.70 (6), p.1108-1111</ispartof><rights>Copyright © 1998 American Chemical Society</rights><rights>1998 INIST-CNRS</rights><rights>Copyright American Chemical Society Mar 15, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-ca394bd113f74f950565aafbac6b5570fcec989e037e319624950be725fa3d9b3</citedby><cites>FETCH-LOGICAL-a470t-ca394bd113f74f950565aafbac6b5570fcec989e037e319624950be725fa3d9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac9711302$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac9711302$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2231140$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9530002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>St. John, Pamela M</creatorcontrib><creatorcontrib>Davis, Robert</creatorcontrib><creatorcontrib>Cady, Nathan</creatorcontrib><creatorcontrib>Czajka, John</creatorcontrib><creatorcontrib>Batt, Carl A</creatorcontrib><creatorcontrib>Craighead, Harold G</creatorcontrib><title>Diffraction-Based Cell Detection Using a Microcontact Printed Antibody Grating</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>An optical detector has been fabricated that is specific for targeted bacterial cells, by stamping an antibody grating pattern on a silicon surface. The antibody grating alone produces insignificant optical diffraction, but upon immunocapture of cells, the optical phase change produces a diffraction pattern. This technique eliminates much of the surface modifications and the secondary immunochemical or enzyme-linked steps that are common in immunoassays. Microcontact printing provides an alternative to previously reported photolithographic-mediated antibody patterning processes and uses a photolithographic process simply to produce the elastomeric stamp. We have stamped antibodies directly onto clean native oxide silicon substrates with no other chemical surface treatments. Direct binding of the antibodies to the silicon occurs in a way that still allows them to function and selectively bind antigen. The performance of the sensor was evaluated by capturing Escherichia coli O157:H7 cells on the antibody-stamped lines and measuring the intensity of the first-order diffraction beam resulting from the attachment of cells. The diffraction intensity increases in proportion to the cell density bound on the surface.</description><subject>Antibodies</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Cells</subject><subject>Escherichia coli O157 - isolation &amp; purification</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Methods. Procedures. Technologies</subject><subject>Microscopy, Atomic Force</subject><subject>Optics</subject><subject>Others</subject><subject>Various methods and equipments</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0F1LHDEUBuAgLXb9uPAHFIZSC72Y9iSZJJtLXetYsCp0xctwJpOU2N0Zm2RB_32ju2yhXgVyHpL3vIQcUfhCgdGvaLWilAPbIRMqGNRyOmVvyAQAeM0UwDuyl9I9AKVA5S7Z1YKXGZuQq7PgfUSbwzjUp5hcX83cYlGduexeLqvbFIZfFVY_go2jHYdccHUTw5CLPRly6Mb-qWoj5uIOyFuPi-QON-c-uT3_Np9d1JfX7ffZyWWNjYJcW-S66foS2avGawFCCkTfoZWdEAq8dVZPtQOuHKdasqaYzikmPPJed3yffFq_-xDHPyuXslmGZEtwHNy4SkZpJbmQssAP_8H7cRWHks0wqqZNIwQU9HmNyoYpRefNQwxLjE-Ggnku2GwLLvb95sFVt3T9Vm4aLfOPmzkmi4vS7WBD2jLGOKXN85f1moWU3eN2jPG3kYorYeY3P81VS-90OxemLf547dGmfyu8jvcXUoCbIA</recordid><startdate>19980315</startdate><enddate>19980315</enddate><creator>St. John, Pamela M</creator><creator>Davis, Robert</creator><creator>Cady, Nathan</creator><creator>Czajka, John</creator><creator>Batt, Carl A</creator><creator>Craighead, Harold G</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19980315</creationdate><title>Diffraction-Based Cell Detection Using a Microcontact Printed Antibody Grating</title><author>St. John, Pamela M ; Davis, Robert ; Cady, Nathan ; Czajka, John ; Batt, Carl A ; Craighead, Harold G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-ca394bd113f74f950565aafbac6b5570fcec989e037e319624950be725fa3d9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Antibodies</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Cells</topic><topic>Escherichia coli O157 - isolation &amp; purification</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Methods. Procedures. Technologies</topic><topic>Microscopy, Atomic Force</topic><topic>Optics</topic><topic>Others</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>St. John, Pamela M</creatorcontrib><creatorcontrib>Davis, Robert</creatorcontrib><creatorcontrib>Cady, Nathan</creatorcontrib><creatorcontrib>Czajka, John</creatorcontrib><creatorcontrib>Batt, Carl A</creatorcontrib><creatorcontrib>Craighead, Harold G</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>St. John, Pamela M</au><au>Davis, Robert</au><au>Cady, Nathan</au><au>Czajka, John</au><au>Batt, Carl A</au><au>Craighead, Harold G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffraction-Based Cell Detection Using a Microcontact Printed Antibody Grating</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>1998-03-15</date><risdate>1998</risdate><volume>70</volume><issue>6</issue><spage>1108</spage><epage>1111</epage><pages>1108-1111</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>An optical detector has been fabricated that is specific for targeted bacterial cells, by stamping an antibody grating pattern on a silicon surface. The antibody grating alone produces insignificant optical diffraction, but upon immunocapture of cells, the optical phase change produces a diffraction pattern. This technique eliminates much of the surface modifications and the secondary immunochemical or enzyme-linked steps that are common in immunoassays. Microcontact printing provides an alternative to previously reported photolithographic-mediated antibody patterning processes and uses a photolithographic process simply to produce the elastomeric stamp. We have stamped antibodies directly onto clean native oxide silicon substrates with no other chemical surface treatments. Direct binding of the antibodies to the silicon occurs in a way that still allows them to function and selectively bind antigen. The performance of the sensor was evaluated by capturing Escherichia coli O157:H7 cells on the antibody-stamped lines and measuring the intensity of the first-order diffraction beam resulting from the attachment of cells. The diffraction intensity increases in proportion to the cell density bound on the surface.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>9530002</pmid><doi>10.1021/ac9711302</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 1998-03, Vol.70 (6), p.1108-1111
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_79763566
source ACS Publications; MEDLINE
subjects Antibodies
Bacteria
Biochemistry
Biological and medical sciences
Biosensing Techniques
Biosensors
Biotechnology
Cells
Escherichia coli O157 - isolation & purification
Fundamental and applied biological sciences. Psychology
Methods. Procedures. Technologies
Microscopy, Atomic Force
Optics
Others
Various methods and equipments
title Diffraction-Based Cell Detection Using a Microcontact Printed Antibody Grating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffraction-Based%20Cell%20Detection%20Using%20a%20Microcontact%20Printed%20Antibody%20Grating&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=St.%20John,%20Pamela%20M&rft.date=1998-03-15&rft.volume=70&rft.issue=6&rft.spage=1108&rft.epage=1111&rft.pages=1108-1111&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac9711302&rft_dat=%3Cproquest_cross%3E79763566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217844550&rft_id=info:pmid/9530002&rfr_iscdi=true