αB-crystallin and hsp25 in neonatal cardiac cells — differences in cellular localization under stress conditions
Two members of the small heat shock protein family, αB-crystallin and hsp25, occur at high levels in the mammalian heart. To try and understand any differences in functioning, we compared their properties in cultured rat neonatal cardiac myocytes. Both proteins are stress-inducible, but the level of...
Gespeichert in:
Veröffentlicht in: | European journal of cell biology 1998, Vol.75 (1), p.38-45 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two members of the small heat shock protein family, αB-crystallin and hsp25, occur at high levels in the mammalian heart. To try and understand any differences in functioning, we compared their properties in cultured rat neonatal cardiac myocytes. Both proteins are stress-inducible, but the level of hsp25 is only slightly increased in cultured cardiac myocytes subjected to hyperthermic stress, while αB-crystallin levels even remain unchanged. Phosphorylation of αB-crystallin and to a lesser extent also of hsp2S is induced after the heat shock. Directly after heat stress, αB-crystallin and hsp25 are partly found in detergent-insoluble fractions, representing cytoskeletal/nuclear structures. Additionally, we show by confocal laser scanning microscopy that αB-crystallin and hsp25 become associated with sarcomeric structures directly after the heat shock, indicating a cytoskeletal protective function. Four to six hours after the heat shock, both proteins reoccupy their original positions in the cytoplasm again. In contrast to αB-crystallin, hsp25 not only translocates to the cytoskeleton but also migrates to positions inside the nucleus. Despite the fact that both proteins are normally part of the same complex, their behavior in neonatal cardiac myocytes appears to be very different. The sarcomeric association of αB-crystallin occurs under milder conditions and persists for a longer period of time in comparison with hsp25. Our findings suggest that αB-crystallin and hsp25 are both involved in protection of the cytoskeleton during stress situations in the heart, although in different manners. In addition, hsp25 also plays a role inside the nucleus. |
---|---|
ISSN: | 0171-9335 1618-1298 |
DOI: | 10.1016/S0171-9335(98)80044-7 |