Genetic mapping of the galanin-GMAP (Galn) gene to mouse chromosome 19
The galanin-GMAP gene (Galn) encodes preprogalanin, which is enzymatically cleaved into the peptides galanin and galanin message-associated peptide (GMAP; Fig. 1a; Roekaeus 1994). Galanin mRNA and peptide have been detected widely in the central and peripheral nervous systems, in endocrine tissues s...
Gespeichert in:
Veröffentlicht in: | Mammalian genome 1998-03, Vol.9 (3), p.240-242 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 242 |
---|---|
container_issue | 3 |
container_start_page | 240 |
container_title | Mammalian genome |
container_volume | 9 |
creator | Guida, L C Charlton, P Gilbert, D J Jenkins, N A Copeland, N G Nicholls, R D |
description | The galanin-GMAP gene (Galn) encodes preprogalanin, which is enzymatically cleaved into the peptides galanin and galanin message-associated peptide (GMAP; Fig. 1a; Roekaeus 1994). Galanin mRNA and peptide have been detected widely in the central and peripheral nervous systems, in endocrine tissues such as the hypothalamus, anterior pituitary, pancreas, adrenal, thyroid and parathyroid glands, and in developing bone (Roekaeus 1994; Xu et al. 1996). Physiological studies suggest that galanin modulates neuroendocrine systems by affecting satiety, the development of prolactinomas, potentiating growth hormone and gonadotropin release, and inhibition of insulin release (Roekaeus 1994; Bedecs et al. 1995; Wynick et al. 1993). However, a precise physiological role for the galanin and GMAP peptides has yet to be determined, despite high conservation of galanin across species (Kofler et al. 1996). As the first step in a genetic approach to understanding the Galn gene function, we have mapped the mouse Galn gene to proximal Chromosome (Chr) 19 by interspecific backcross and recombinant inbred strain analyses. The region of synteny between this region and human Chr 11q13, where human GALN has been localized (Evans et al. 1993; Guida et al. in preparation), suggests the likely location of mouse homologs of a series of human endocrine disease loci. Southern analyses of restriction digests of mouse DNA with a Galn cDNA probe identified an MspI restriction fragment length polymorphism (RFLP) between different recombinant inbred (RI) strains of mice. |
doi_str_mv | 10.1007/s003359900733 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79723837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79723837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-f2d28c01312716e662986dc3386e162ef4039b04cf8e9eaf30035d01a31d059a3</originalsourceid><addsrcrecordid>eNqFkTFPwzAQhS0EKqUwMiJZDAiGwNmX2PFYVTQgFcEAc-Q6TpsqiUucDPx7XLVCgoXpTrpP7967I-SSwT0DkA8eADFRKvSIR2TMYuQRk1IekzEoTKM0zE7JmfcbACYFkyMyUgkwZDAm88y2tq8MbfR2W7Ur6krary1d6Vq3VRtlL9M3epvpur2jq4DS3tHGDd5Ss-5c47xrLGXqnJyUuvb24lAn5GP--D57ihav2fNsuogMxqKPSl7w1OxWc8mEFYKrVBQGMRWWCW7LGFAtITZlapXVJYZsSQFMIysgURon5Gavu-3c52B9nzeVN7YOZm1wlUslOaYo_wWZiBORJDyA13_AjRu6NoQIYggoZbA7IdEeMp3zvrNlvu2qRndfOYN894X81xcCf3UQHZaNLX7ow9nxG7GjfaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>793037701</pqid></control><display><type>article</type><title>Genetic mapping of the galanin-GMAP (Galn) gene to mouse chromosome 19</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Guida, L C ; Charlton, P ; Gilbert, D J ; Jenkins, N A ; Copeland, N G ; Nicholls, R D</creator><creatorcontrib>Guida, L C ; Charlton, P ; Gilbert, D J ; Jenkins, N A ; Copeland, N G ; Nicholls, R D</creatorcontrib><description>The galanin-GMAP gene (Galn) encodes preprogalanin, which is enzymatically cleaved into the peptides galanin and galanin message-associated peptide (GMAP; Fig. 1a; Roekaeus 1994). Galanin mRNA and peptide have been detected widely in the central and peripheral nervous systems, in endocrine tissues such as the hypothalamus, anterior pituitary, pancreas, adrenal, thyroid and parathyroid glands, and in developing bone (Roekaeus 1994; Xu et al. 1996). Physiological studies suggest that galanin modulates neuroendocrine systems by affecting satiety, the development of prolactinomas, potentiating growth hormone and gonadotropin release, and inhibition of insulin release (Roekaeus 1994; Bedecs et al. 1995; Wynick et al. 1993). However, a precise physiological role for the galanin and GMAP peptides has yet to be determined, despite high conservation of galanin across species (Kofler et al. 1996). As the first step in a genetic approach to understanding the Galn gene function, we have mapped the mouse Galn gene to proximal Chromosome (Chr) 19 by interspecific backcross and recombinant inbred strain analyses. The region of synteny between this region and human Chr 11q13, where human GALN has been localized (Evans et al. 1993; Guida et al. in preparation), suggests the likely location of mouse homologs of a series of human endocrine disease loci. Southern analyses of restriction digests of mouse DNA with a Galn cDNA probe identified an MspI restriction fragment length polymorphism (RFLP) between different recombinant inbred (RI) strains of mice.</description><identifier>ISSN: 0938-8990</identifier><identifier>EISSN: 1432-1777</identifier><identifier>DOI: 10.1007/s003359900733</identifier><identifier>PMID: 9501310</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Animals ; Chromosome 19 ; Chromosome Mapping ; Chromosomes ; Female ; Galanin ; Galanin - genetics ; Gene mapping ; Humans ; Male ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Mice, Inbred DBA</subject><ispartof>Mammalian genome, 1998-03, Vol.9 (3), p.240-242</ispartof><rights>Springer-Verlag 1998.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-f2d28c01312716e662986dc3386e162ef4039b04cf8e9eaf30035d01a31d059a3</citedby><cites>FETCH-LOGICAL-c346t-f2d28c01312716e662986dc3386e162ef4039b04cf8e9eaf30035d01a31d059a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9501310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guida, L C</creatorcontrib><creatorcontrib>Charlton, P</creatorcontrib><creatorcontrib>Gilbert, D J</creatorcontrib><creatorcontrib>Jenkins, N A</creatorcontrib><creatorcontrib>Copeland, N G</creatorcontrib><creatorcontrib>Nicholls, R D</creatorcontrib><title>Genetic mapping of the galanin-GMAP (Galn) gene to mouse chromosome 19</title><title>Mammalian genome</title><addtitle>Mamm Genome</addtitle><description>The galanin-GMAP gene (Galn) encodes preprogalanin, which is enzymatically cleaved into the peptides galanin and galanin message-associated peptide (GMAP; Fig. 1a; Roekaeus 1994). Galanin mRNA and peptide have been detected widely in the central and peripheral nervous systems, in endocrine tissues such as the hypothalamus, anterior pituitary, pancreas, adrenal, thyroid and parathyroid glands, and in developing bone (Roekaeus 1994; Xu et al. 1996). Physiological studies suggest that galanin modulates neuroendocrine systems by affecting satiety, the development of prolactinomas, potentiating growth hormone and gonadotropin release, and inhibition of insulin release (Roekaeus 1994; Bedecs et al. 1995; Wynick et al. 1993). However, a precise physiological role for the galanin and GMAP peptides has yet to be determined, despite high conservation of galanin across species (Kofler et al. 1996). As the first step in a genetic approach to understanding the Galn gene function, we have mapped the mouse Galn gene to proximal Chromosome (Chr) 19 by interspecific backcross and recombinant inbred strain analyses. The region of synteny between this region and human Chr 11q13, where human GALN has been localized (Evans et al. 1993; Guida et al. in preparation), suggests the likely location of mouse homologs of a series of human endocrine disease loci. Southern analyses of restriction digests of mouse DNA with a Galn cDNA probe identified an MspI restriction fragment length polymorphism (RFLP) between different recombinant inbred (RI) strains of mice.</description><subject>Animals</subject><subject>Chromosome 19</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Female</subject><subject>Galanin</subject><subject>Galanin - genetics</subject><subject>Gene mapping</subject><subject>Humans</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C3H</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred DBA</subject><issn>0938-8990</issn><issn>1432-1777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkTFPwzAQhS0EKqUwMiJZDAiGwNmX2PFYVTQgFcEAc-Q6TpsqiUucDPx7XLVCgoXpTrpP7967I-SSwT0DkA8eADFRKvSIR2TMYuQRk1IekzEoTKM0zE7JmfcbACYFkyMyUgkwZDAm88y2tq8MbfR2W7Ur6krary1d6Vq3VRtlL9M3epvpur2jq4DS3tHGDd5Ss-5c47xrLGXqnJyUuvb24lAn5GP--D57ihav2fNsuogMxqKPSl7w1OxWc8mEFYKrVBQGMRWWCW7LGFAtITZlapXVJYZsSQFMIysgURon5Gavu-3c52B9nzeVN7YOZm1wlUslOaYo_wWZiBORJDyA13_AjRu6NoQIYggoZbA7IdEeMp3zvrNlvu2qRndfOYN894X81xcCf3UQHZaNLX7ow9nxG7GjfaE</recordid><startdate>199803</startdate><enddate>199803</enddate><creator>Guida, L C</creator><creator>Charlton, P</creator><creator>Gilbert, D J</creator><creator>Jenkins, N A</creator><creator>Copeland, N G</creator><creator>Nicholls, R D</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>199803</creationdate><title>Genetic mapping of the galanin-GMAP (Galn) gene to mouse chromosome 19</title><author>Guida, L C ; Charlton, P ; Gilbert, D J ; Jenkins, N A ; Copeland, N G ; Nicholls, R D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-f2d28c01312716e662986dc3386e162ef4039b04cf8e9eaf30035d01a31d059a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Chromosome 19</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Female</topic><topic>Galanin</topic><topic>Galanin - genetics</topic><topic>Gene mapping</topic><topic>Humans</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C3H</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred DBA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guida, L C</creatorcontrib><creatorcontrib>Charlton, P</creatorcontrib><creatorcontrib>Gilbert, D J</creatorcontrib><creatorcontrib>Jenkins, N A</creatorcontrib><creatorcontrib>Copeland, N G</creatorcontrib><creatorcontrib>Nicholls, R D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Mammalian genome</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guida, L C</au><au>Charlton, P</au><au>Gilbert, D J</au><au>Jenkins, N A</au><au>Copeland, N G</au><au>Nicholls, R D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic mapping of the galanin-GMAP (Galn) gene to mouse chromosome 19</atitle><jtitle>Mammalian genome</jtitle><addtitle>Mamm Genome</addtitle><date>1998-03</date><risdate>1998</risdate><volume>9</volume><issue>3</issue><spage>240</spage><epage>242</epage><pages>240-242</pages><issn>0938-8990</issn><eissn>1432-1777</eissn><abstract>The galanin-GMAP gene (Galn) encodes preprogalanin, which is enzymatically cleaved into the peptides galanin and galanin message-associated peptide (GMAP; Fig. 1a; Roekaeus 1994). Galanin mRNA and peptide have been detected widely in the central and peripheral nervous systems, in endocrine tissues such as the hypothalamus, anterior pituitary, pancreas, adrenal, thyroid and parathyroid glands, and in developing bone (Roekaeus 1994; Xu et al. 1996). Physiological studies suggest that galanin modulates neuroendocrine systems by affecting satiety, the development of prolactinomas, potentiating growth hormone and gonadotropin release, and inhibition of insulin release (Roekaeus 1994; Bedecs et al. 1995; Wynick et al. 1993). However, a precise physiological role for the galanin and GMAP peptides has yet to be determined, despite high conservation of galanin across species (Kofler et al. 1996). As the first step in a genetic approach to understanding the Galn gene function, we have mapped the mouse Galn gene to proximal Chromosome (Chr) 19 by interspecific backcross and recombinant inbred strain analyses. The region of synteny between this region and human Chr 11q13, where human GALN has been localized (Evans et al. 1993; Guida et al. in preparation), suggests the likely location of mouse homologs of a series of human endocrine disease loci. Southern analyses of restriction digests of mouse DNA with a Galn cDNA probe identified an MspI restriction fragment length polymorphism (RFLP) between different recombinant inbred (RI) strains of mice.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>9501310</pmid><doi>10.1007/s003359900733</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-8990 |
ispartof | Mammalian genome, 1998-03, Vol.9 (3), p.240-242 |
issn | 0938-8990 1432-1777 |
language | eng |
recordid | cdi_proquest_miscellaneous_79723837 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Chromosome 19 Chromosome Mapping Chromosomes Female Galanin Galanin - genetics Gene mapping Humans Male Mice Mice, Inbred C3H Mice, Inbred C57BL Mice, Inbred DBA |
title | Genetic mapping of the galanin-GMAP (Galn) gene to mouse chromosome 19 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20mapping%20of%20the%20galanin-GMAP%20(Galn)%20gene%20to%20mouse%20chromosome%2019&rft.jtitle=Mammalian%20genome&rft.au=Guida,%20L%20C&rft.date=1998-03&rft.volume=9&rft.issue=3&rft.spage=240&rft.epage=242&rft.pages=240-242&rft.issn=0938-8990&rft.eissn=1432-1777&rft_id=info:doi/10.1007/s003359900733&rft_dat=%3Cproquest_cross%3E79723837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=793037701&rft_id=info:pmid/9501310&rfr_iscdi=true |