Mass‐Transfer Properties of Microbubbles. 1. Experimental Studies

Synthesis‐gas fermentations have typically been gas‐to‐liquid mass‐transfer‐limited due to low solubilities of the gaseous substrates. A potential method to enhance mass‐transfer rates is to sparge with microbubble dispersions. Mass‐transfer coefficients for microbubble dispersions were measured in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 1998, Vol.14 (1), p.31-38
Hauptverfasser: Bredwell, Marshall D., Worden, R. Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue 1
container_start_page 31
container_title Biotechnology progress
container_volume 14
creator Bredwell, Marshall D.
Worden, R. Mark
description Synthesis‐gas fermentations have typically been gas‐to‐liquid mass‐transfer‐limited due to low solubilities of the gaseous substrates. A potential method to enhance mass‐transfer rates is to sparge with microbubble dispersions. Mass‐transfer coefficients for microbubble dispersions were measured in a bubble column. Oxygen microbubbles were formed in a dilute Tween 20 solution using a spinning disk apparatus. Axial dispersion coefficients measured for the bubble column ranged from 1.5 to 7.2 cm2/s and were essentially independent of flow rate. A laser‐diffraction technique was used to determine the interfacial area per unit gas volume, a. The mass‐transfer coefficient, KL, was determined by fitting a plug‐flow model to the experimental, steady‐state, liquid‐phase oxygen‐concentration profile. The KL values ranged from 2.9 × 10−5 to 2.2 × 10−4 m/s. Volumetric mass‐transfer coefficients, KLa, for microbubbles with an average initial diameter of 60 μm ranged from 200 to 1800 h−1. Enhancement of mass transfer using microbubbles was demonstrated for a synthesis‐gas fermentation. Butyribacterium methylotrophicum was grown in a continuous, stirred‐tank reactor using a tangential filter for total cell recycle. The fermentation KLa values were 14 h−1 for conventional gas sparging through a stainless steel frit and 91 h−1 for microbubble sparging. The Power number of the microbubble generator was determined to be 0.036. Using this value, an incremental power‐to‐volume ratio to produce microbubbles for a B. methylotrophicum fermentation was estimated to be 0.01 kW/m3 of fermentation capacity.
doi_str_mv 10.1021/bp970133x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_79722653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16350464</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2423-fb89feb7308a33ae37e07545c7f113ae36e6828b20f51e83f4396bb722a53c4f3</originalsourceid><addsrcrecordid>eNqFkctOwkAUhidGg4gufACTrtwVZ-bMrUsleEkgEsV1M1POJDWF1k4bYecj-Iw-iSUQtqzOOfm-nMX_E3LN6JBRzu5clWjKANYnpM8kp7GiAKekb7RUsU7AnJOLED4ppYYq3iO9RCRKKdMno6kN4e_nd17bVfBYR7O6rLBucgxR6aNpntWla50rMAwjNozG647mS1w1tojem3bRiZfkzNsi4NV-DsjH43g-eo4nr08vo_tJXHHBIfbOJB6dBmosgEXQSLUUMtOese2tUBluHKdeMjTgBSTKOc25lZAJDwNyu_tb1eVXi6FJl3nIsCjsCss2pDrpXCXhqMgZMBD0uMgUSCqU6MSbvdi6JS7SqsvA1pt0n2PH2Y5_5wVuDpjRdNtPeugnfZjP3nY7_AN6T4I4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16350464</pqid></control><display><type>article</type><title>Mass‐Transfer Properties of Microbubbles. 1. Experimental Studies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bredwell, Marshall D. ; Worden, R. Mark</creator><creatorcontrib>Bredwell, Marshall D. ; Worden, R. Mark</creatorcontrib><description>Synthesis‐gas fermentations have typically been gas‐to‐liquid mass‐transfer‐limited due to low solubilities of the gaseous substrates. A potential method to enhance mass‐transfer rates is to sparge with microbubble dispersions. Mass‐transfer coefficients for microbubble dispersions were measured in a bubble column. Oxygen microbubbles were formed in a dilute Tween 20 solution using a spinning disk apparatus. Axial dispersion coefficients measured for the bubble column ranged from 1.5 to 7.2 cm2/s and were essentially independent of flow rate. A laser‐diffraction technique was used to determine the interfacial area per unit gas volume, a. The mass‐transfer coefficient, KL, was determined by fitting a plug‐flow model to the experimental, steady‐state, liquid‐phase oxygen‐concentration profile. The KL values ranged from 2.9 × 10−5 to 2.2 × 10−4 m/s. Volumetric mass‐transfer coefficients, KLa, for microbubbles with an average initial diameter of 60 μm ranged from 200 to 1800 h−1. Enhancement of mass transfer using microbubbles was demonstrated for a synthesis‐gas fermentation. Butyribacterium methylotrophicum was grown in a continuous, stirred‐tank reactor using a tangential filter for total cell recycle. The fermentation KLa values were 14 h−1 for conventional gas sparging through a stainless steel frit and 91 h−1 for microbubble sparging. The Power number of the microbubble generator was determined to be 0.036. Using this value, an incremental power‐to‐volume ratio to produce microbubbles for a B. methylotrophicum fermentation was estimated to be 0.01 kW/m3 of fermentation capacity.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1021/bp970133x</identifier><identifier>PMID: 9496668</identifier><language>eng</language><publisher>USA: American Chemical Society</publisher><subject>Bacteria ; Bioreactors ; Biotechnology ; Bubbles (in fluids) ; Carbon Monoxide ; Colloids ; Continuous cell culture ; Diffusion ; Dispersions ; Fermentation ; Hydrogen ; Kinetics ; Laser applications ; Mass transfer ; Mathematical models ; Mathematics ; Microspheres ; Oxygen ; Surface-Active Agents</subject><ispartof>Biotechnology progress, 1998, Vol.14 (1), p.31-38</ispartof><rights>Copyright © 1998 American Institute of Chemical Engineers (AIChE)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1021%2Fbp970133x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1021%2Fbp970133x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9496668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bredwell, Marshall D.</creatorcontrib><creatorcontrib>Worden, R. Mark</creatorcontrib><title>Mass‐Transfer Properties of Microbubbles. 1. Experimental Studies</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>Synthesis‐gas fermentations have typically been gas‐to‐liquid mass‐transfer‐limited due to low solubilities of the gaseous substrates. A potential method to enhance mass‐transfer rates is to sparge with microbubble dispersions. Mass‐transfer coefficients for microbubble dispersions were measured in a bubble column. Oxygen microbubbles were formed in a dilute Tween 20 solution using a spinning disk apparatus. Axial dispersion coefficients measured for the bubble column ranged from 1.5 to 7.2 cm2/s and were essentially independent of flow rate. A laser‐diffraction technique was used to determine the interfacial area per unit gas volume, a. The mass‐transfer coefficient, KL, was determined by fitting a plug‐flow model to the experimental, steady‐state, liquid‐phase oxygen‐concentration profile. The KL values ranged from 2.9 × 10−5 to 2.2 × 10−4 m/s. Volumetric mass‐transfer coefficients, KLa, for microbubbles with an average initial diameter of 60 μm ranged from 200 to 1800 h−1. Enhancement of mass transfer using microbubbles was demonstrated for a synthesis‐gas fermentation. Butyribacterium methylotrophicum was grown in a continuous, stirred‐tank reactor using a tangential filter for total cell recycle. The fermentation KLa values were 14 h−1 for conventional gas sparging through a stainless steel frit and 91 h−1 for microbubble sparging. The Power number of the microbubble generator was determined to be 0.036. Using this value, an incremental power‐to‐volume ratio to produce microbubbles for a B. methylotrophicum fermentation was estimated to be 0.01 kW/m3 of fermentation capacity.</description><subject>Bacteria</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Bubbles (in fluids)</subject><subject>Carbon Monoxide</subject><subject>Colloids</subject><subject>Continuous cell culture</subject><subject>Diffusion</subject><subject>Dispersions</subject><subject>Fermentation</subject><subject>Hydrogen</subject><subject>Kinetics</subject><subject>Laser applications</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Microspheres</subject><subject>Oxygen</subject><subject>Surface-Active Agents</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctOwkAUhidGg4gufACTrtwVZ-bMrUsleEkgEsV1M1POJDWF1k4bYecj-Iw-iSUQtqzOOfm-nMX_E3LN6JBRzu5clWjKANYnpM8kp7GiAKekb7RUsU7AnJOLED4ppYYq3iO9RCRKKdMno6kN4e_nd17bVfBYR7O6rLBucgxR6aNpntWla50rMAwjNozG647mS1w1tojem3bRiZfkzNsi4NV-DsjH43g-eo4nr08vo_tJXHHBIfbOJB6dBmosgEXQSLUUMtOese2tUBluHKdeMjTgBSTKOc25lZAJDwNyu_tb1eVXi6FJl3nIsCjsCss2pDrpXCXhqMgZMBD0uMgUSCqU6MSbvdi6JS7SqsvA1pt0n2PH2Y5_5wVuDpjRdNtPeugnfZjP3nY7_AN6T4I4</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Bredwell, Marshall D.</creator><creator>Worden, R. Mark</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>1998</creationdate><title>Mass‐Transfer Properties of Microbubbles. 1. Experimental Studies</title><author>Bredwell, Marshall D. ; Worden, R. Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2423-fb89feb7308a33ae37e07545c7f113ae36e6828b20f51e83f4396bb722a53c4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bacteria</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Bubbles (in fluids)</topic><topic>Carbon Monoxide</topic><topic>Colloids</topic><topic>Continuous cell culture</topic><topic>Diffusion</topic><topic>Dispersions</topic><topic>Fermentation</topic><topic>Hydrogen</topic><topic>Kinetics</topic><topic>Laser applications</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Microspheres</topic><topic>Oxygen</topic><topic>Surface-Active Agents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bredwell, Marshall D.</creatorcontrib><creatorcontrib>Worden, R. Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bredwell, Marshall D.</au><au>Worden, R. Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass‐Transfer Properties of Microbubbles. 1. Experimental Studies</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>1998</date><risdate>1998</risdate><volume>14</volume><issue>1</issue><spage>31</spage><epage>38</epage><pages>31-38</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Synthesis‐gas fermentations have typically been gas‐to‐liquid mass‐transfer‐limited due to low solubilities of the gaseous substrates. A potential method to enhance mass‐transfer rates is to sparge with microbubble dispersions. Mass‐transfer coefficients for microbubble dispersions were measured in a bubble column. Oxygen microbubbles were formed in a dilute Tween 20 solution using a spinning disk apparatus. Axial dispersion coefficients measured for the bubble column ranged from 1.5 to 7.2 cm2/s and were essentially independent of flow rate. A laser‐diffraction technique was used to determine the interfacial area per unit gas volume, a. The mass‐transfer coefficient, KL, was determined by fitting a plug‐flow model to the experimental, steady‐state, liquid‐phase oxygen‐concentration profile. The KL values ranged from 2.9 × 10−5 to 2.2 × 10−4 m/s. Volumetric mass‐transfer coefficients, KLa, for microbubbles with an average initial diameter of 60 μm ranged from 200 to 1800 h−1. Enhancement of mass transfer using microbubbles was demonstrated for a synthesis‐gas fermentation. Butyribacterium methylotrophicum was grown in a continuous, stirred‐tank reactor using a tangential filter for total cell recycle. The fermentation KLa values were 14 h−1 for conventional gas sparging through a stainless steel frit and 91 h−1 for microbubble sparging. The Power number of the microbubble generator was determined to be 0.036. Using this value, an incremental power‐to‐volume ratio to produce microbubbles for a B. methylotrophicum fermentation was estimated to be 0.01 kW/m3 of fermentation capacity.</abstract><cop>USA</cop><pub>American Chemical Society</pub><pmid>9496668</pmid><doi>10.1021/bp970133x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 1998, Vol.14 (1), p.31-38
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_79722653
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bacteria
Bioreactors
Biotechnology
Bubbles (in fluids)
Carbon Monoxide
Colloids
Continuous cell culture
Diffusion
Dispersions
Fermentation
Hydrogen
Kinetics
Laser applications
Mass transfer
Mathematical models
Mathematics
Microspheres
Oxygen
Surface-Active Agents
title Mass‐Transfer Properties of Microbubbles. 1. Experimental Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%E2%80%90Transfer%20Properties%20of%20Microbubbles.%201.%20Experimental%20Studies&rft.jtitle=Biotechnology%20progress&rft.au=Bredwell,%20Marshall%20D.&rft.date=1998&rft.volume=14&rft.issue=1&rft.spage=31&rft.epage=38&rft.pages=31-38&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1021/bp970133x&rft_dat=%3Cproquest_pubme%3E16350464%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16350464&rft_id=info:pmid/9496668&rfr_iscdi=true