Mass‐Transfer Properties of Microbubbles. 1. Experimental Studies
Synthesis‐gas fermentations have typically been gas‐to‐liquid mass‐transfer‐limited due to low solubilities of the gaseous substrates. A potential method to enhance mass‐transfer rates is to sparge with microbubble dispersions. Mass‐transfer coefficients for microbubble dispersions were measured in...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 1998, Vol.14 (1), p.31-38 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 1 |
container_start_page | 31 |
container_title | Biotechnology progress |
container_volume | 14 |
creator | Bredwell, Marshall D. Worden, R. Mark |
description | Synthesis‐gas fermentations have typically been gas‐to‐liquid mass‐transfer‐limited due to low solubilities of the gaseous substrates. A potential method to enhance mass‐transfer rates is to sparge with microbubble dispersions. Mass‐transfer coefficients for microbubble dispersions were measured in a bubble column. Oxygen microbubbles were formed in a dilute Tween 20 solution using a spinning disk apparatus. Axial dispersion coefficients measured for the bubble column ranged from 1.5 to 7.2 cm2/s and were essentially independent of flow rate. A laser‐diffraction technique was used to determine the interfacial area per unit gas volume, a. The mass‐transfer coefficient, KL, was determined by fitting a plug‐flow model to the experimental, steady‐state, liquid‐phase oxygen‐concentration profile. The KL values ranged from 2.9 × 10−5 to 2.2 × 10−4 m/s. Volumetric mass‐transfer coefficients, KLa, for microbubbles with an average initial diameter of 60 μm ranged from 200 to 1800 h−1. Enhancement of mass transfer using microbubbles was demonstrated for a synthesis‐gas fermentation. Butyribacterium methylotrophicum was grown in a continuous, stirred‐tank reactor using a tangential filter for total cell recycle. The fermentation KLa values were 14 h−1 for conventional gas sparging through a stainless steel frit and 91 h−1 for microbubble sparging. The Power number of the microbubble generator was determined to be 0.036. Using this value, an incremental power‐to‐volume ratio to produce microbubbles for a B. methylotrophicum fermentation was estimated to be 0.01 kW/m3 of fermentation capacity. |
doi_str_mv | 10.1021/bp970133x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_79722653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16350464</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2423-fb89feb7308a33ae37e07545c7f113ae36e6828b20f51e83f4396bb722a53c4f3</originalsourceid><addsrcrecordid>eNqFkctOwkAUhidGg4gufACTrtwVZ-bMrUsleEkgEsV1M1POJDWF1k4bYecj-Iw-iSUQtqzOOfm-nMX_E3LN6JBRzu5clWjKANYnpM8kp7GiAKekb7RUsU7AnJOLED4ppYYq3iO9RCRKKdMno6kN4e_nd17bVfBYR7O6rLBucgxR6aNpntWla50rMAwjNozG647mS1w1tojem3bRiZfkzNsi4NV-DsjH43g-eo4nr08vo_tJXHHBIfbOJB6dBmosgEXQSLUUMtOese2tUBluHKdeMjTgBSTKOc25lZAJDwNyu_tb1eVXi6FJl3nIsCjsCss2pDrpXCXhqMgZMBD0uMgUSCqU6MSbvdi6JS7SqsvA1pt0n2PH2Y5_5wVuDpjRdNtPeugnfZjP3nY7_AN6T4I4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16350464</pqid></control><display><type>article</type><title>Mass‐Transfer Properties of Microbubbles. 1. Experimental Studies</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bredwell, Marshall D. ; Worden, R. Mark</creator><creatorcontrib>Bredwell, Marshall D. ; Worden, R. Mark</creatorcontrib><description>Synthesis‐gas fermentations have typically been gas‐to‐liquid mass‐transfer‐limited due to low solubilities of the gaseous substrates. A potential method to enhance mass‐transfer rates is to sparge with microbubble dispersions. Mass‐transfer coefficients for microbubble dispersions were measured in a bubble column. Oxygen microbubbles were formed in a dilute Tween 20 solution using a spinning disk apparatus. Axial dispersion coefficients measured for the bubble column ranged from 1.5 to 7.2 cm2/s and were essentially independent of flow rate. A laser‐diffraction technique was used to determine the interfacial area per unit gas volume, a. The mass‐transfer coefficient, KL, was determined by fitting a plug‐flow model to the experimental, steady‐state, liquid‐phase oxygen‐concentration profile. The KL values ranged from 2.9 × 10−5 to 2.2 × 10−4 m/s. Volumetric mass‐transfer coefficients, KLa, for microbubbles with an average initial diameter of 60 μm ranged from 200 to 1800 h−1. Enhancement of mass transfer using microbubbles was demonstrated for a synthesis‐gas fermentation. Butyribacterium methylotrophicum was grown in a continuous, stirred‐tank reactor using a tangential filter for total cell recycle. The fermentation KLa values were 14 h−1 for conventional gas sparging through a stainless steel frit and 91 h−1 for microbubble sparging. The Power number of the microbubble generator was determined to be 0.036. Using this value, an incremental power‐to‐volume ratio to produce microbubbles for a B. methylotrophicum fermentation was estimated to be 0.01 kW/m3 of fermentation capacity.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1021/bp970133x</identifier><identifier>PMID: 9496668</identifier><language>eng</language><publisher>USA: American Chemical Society</publisher><subject>Bacteria ; Bioreactors ; Biotechnology ; Bubbles (in fluids) ; Carbon Monoxide ; Colloids ; Continuous cell culture ; Diffusion ; Dispersions ; Fermentation ; Hydrogen ; Kinetics ; Laser applications ; Mass transfer ; Mathematical models ; Mathematics ; Microspheres ; Oxygen ; Surface-Active Agents</subject><ispartof>Biotechnology progress, 1998, Vol.14 (1), p.31-38</ispartof><rights>Copyright © 1998 American Institute of Chemical Engineers (AIChE)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1021%2Fbp970133x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1021%2Fbp970133x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9496668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bredwell, Marshall D.</creatorcontrib><creatorcontrib>Worden, R. Mark</creatorcontrib><title>Mass‐Transfer Properties of Microbubbles. 1. Experimental Studies</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>Synthesis‐gas fermentations have typically been gas‐to‐liquid mass‐transfer‐limited due to low solubilities of the gaseous substrates. A potential method to enhance mass‐transfer rates is to sparge with microbubble dispersions. Mass‐transfer coefficients for microbubble dispersions were measured in a bubble column. Oxygen microbubbles were formed in a dilute Tween 20 solution using a spinning disk apparatus. Axial dispersion coefficients measured for the bubble column ranged from 1.5 to 7.2 cm2/s and were essentially independent of flow rate. A laser‐diffraction technique was used to determine the interfacial area per unit gas volume, a. The mass‐transfer coefficient, KL, was determined by fitting a plug‐flow model to the experimental, steady‐state, liquid‐phase oxygen‐concentration profile. The KL values ranged from 2.9 × 10−5 to 2.2 × 10−4 m/s. Volumetric mass‐transfer coefficients, KLa, for microbubbles with an average initial diameter of 60 μm ranged from 200 to 1800 h−1. Enhancement of mass transfer using microbubbles was demonstrated for a synthesis‐gas fermentation. Butyribacterium methylotrophicum was grown in a continuous, stirred‐tank reactor using a tangential filter for total cell recycle. The fermentation KLa values were 14 h−1 for conventional gas sparging through a stainless steel frit and 91 h−1 for microbubble sparging. The Power number of the microbubble generator was determined to be 0.036. Using this value, an incremental power‐to‐volume ratio to produce microbubbles for a B. methylotrophicum fermentation was estimated to be 0.01 kW/m3 of fermentation capacity.</description><subject>Bacteria</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Bubbles (in fluids)</subject><subject>Carbon Monoxide</subject><subject>Colloids</subject><subject>Continuous cell culture</subject><subject>Diffusion</subject><subject>Dispersions</subject><subject>Fermentation</subject><subject>Hydrogen</subject><subject>Kinetics</subject><subject>Laser applications</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Microspheres</subject><subject>Oxygen</subject><subject>Surface-Active Agents</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctOwkAUhidGg4gufACTrtwVZ-bMrUsleEkgEsV1M1POJDWF1k4bYecj-Iw-iSUQtqzOOfm-nMX_E3LN6JBRzu5clWjKANYnpM8kp7GiAKekb7RUsU7AnJOLED4ppYYq3iO9RCRKKdMno6kN4e_nd17bVfBYR7O6rLBucgxR6aNpntWla50rMAwjNozG647mS1w1tojem3bRiZfkzNsi4NV-DsjH43g-eo4nr08vo_tJXHHBIfbOJB6dBmosgEXQSLUUMtOese2tUBluHKdeMjTgBSTKOc25lZAJDwNyu_tb1eVXi6FJl3nIsCjsCss2pDrpXCXhqMgZMBD0uMgUSCqU6MSbvdi6JS7SqsvA1pt0n2PH2Y5_5wVuDpjRdNtPeugnfZjP3nY7_AN6T4I4</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Bredwell, Marshall D.</creator><creator>Worden, R. Mark</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>1998</creationdate><title>Mass‐Transfer Properties of Microbubbles. 1. Experimental Studies</title><author>Bredwell, Marshall D. ; Worden, R. Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2423-fb89feb7308a33ae37e07545c7f113ae36e6828b20f51e83f4396bb722a53c4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bacteria</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Bubbles (in fluids)</topic><topic>Carbon Monoxide</topic><topic>Colloids</topic><topic>Continuous cell culture</topic><topic>Diffusion</topic><topic>Dispersions</topic><topic>Fermentation</topic><topic>Hydrogen</topic><topic>Kinetics</topic><topic>Laser applications</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Microspheres</topic><topic>Oxygen</topic><topic>Surface-Active Agents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bredwell, Marshall D.</creatorcontrib><creatorcontrib>Worden, R. Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bredwell, Marshall D.</au><au>Worden, R. Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass‐Transfer Properties of Microbubbles. 1. Experimental Studies</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>1998</date><risdate>1998</risdate><volume>14</volume><issue>1</issue><spage>31</spage><epage>38</epage><pages>31-38</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Synthesis‐gas fermentations have typically been gas‐to‐liquid mass‐transfer‐limited due to low solubilities of the gaseous substrates. A potential method to enhance mass‐transfer rates is to sparge with microbubble dispersions. Mass‐transfer coefficients for microbubble dispersions were measured in a bubble column. Oxygen microbubbles were formed in a dilute Tween 20 solution using a spinning disk apparatus. Axial dispersion coefficients measured for the bubble column ranged from 1.5 to 7.2 cm2/s and were essentially independent of flow rate. A laser‐diffraction technique was used to determine the interfacial area per unit gas volume, a. The mass‐transfer coefficient, KL, was determined by fitting a plug‐flow model to the experimental, steady‐state, liquid‐phase oxygen‐concentration profile. The KL values ranged from 2.9 × 10−5 to 2.2 × 10−4 m/s. Volumetric mass‐transfer coefficients, KLa, for microbubbles with an average initial diameter of 60 μm ranged from 200 to 1800 h−1. Enhancement of mass transfer using microbubbles was demonstrated for a synthesis‐gas fermentation. Butyribacterium methylotrophicum was grown in a continuous, stirred‐tank reactor using a tangential filter for total cell recycle. The fermentation KLa values were 14 h−1 for conventional gas sparging through a stainless steel frit and 91 h−1 for microbubble sparging. The Power number of the microbubble generator was determined to be 0.036. Using this value, an incremental power‐to‐volume ratio to produce microbubbles for a B. methylotrophicum fermentation was estimated to be 0.01 kW/m3 of fermentation capacity.</abstract><cop>USA</cop><pub>American Chemical Society</pub><pmid>9496668</pmid><doi>10.1021/bp970133x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 1998, Vol.14 (1), p.31-38 |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_79722653 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bacteria Bioreactors Biotechnology Bubbles (in fluids) Carbon Monoxide Colloids Continuous cell culture Diffusion Dispersions Fermentation Hydrogen Kinetics Laser applications Mass transfer Mathematical models Mathematics Microspheres Oxygen Surface-Active Agents |
title | Mass‐Transfer Properties of Microbubbles. 1. Experimental Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%E2%80%90Transfer%20Properties%20of%20Microbubbles.%201.%20Experimental%20Studies&rft.jtitle=Biotechnology%20progress&rft.au=Bredwell,%20Marshall%20D.&rft.date=1998&rft.volume=14&rft.issue=1&rft.spage=31&rft.epage=38&rft.pages=31-38&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1021/bp970133x&rft_dat=%3Cproquest_pubme%3E16350464%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16350464&rft_id=info:pmid/9496668&rfr_iscdi=true |