Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95

The cyclic AMP-dependent protein kinase (PKA) type II is directed to different subcellular loci through interaction of the RII subunits with A-kinase anchoring proteins (AKAPs). A full-length human clone encoding AKAP95 was identified and sequenced, and revealed a 692-amino acid open reading frame t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental cell research 1998-02, Vol.238 (2), p.305-316
Hauptverfasser: Eide, Turid, Coghlan, Vince, Ørstavik, Sigurd, Holsve, Christian, Solberg, Rigmor, Skålhegg, Bjørn S., Lamb, Ned J.C., Langeberg, Lorene, Fernandez, Anne, Scott, John D., Jahnsen, Tore, Taskén, Kjetil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue 2
container_start_page 305
container_title Experimental cell research
container_volume 238
creator Eide, Turid
Coghlan, Vince
Ørstavik, Sigurd
Holsve, Christian
Solberg, Rigmor
Skålhegg, Bjørn S.
Lamb, Ned J.C.
Langeberg, Lorene
Fernandez, Anne
Scott, John D.
Jahnsen, Tore
Taskén, Kjetil
description The cyclic AMP-dependent protein kinase (PKA) type II is directed to different subcellular loci through interaction of the RII subunits with A-kinase anchoring proteins (AKAPs). A full-length human clone encoding AKAP95 was identified and sequenced, and revealed a 692-amino acid open reading frame that was 89% homologous to the rat AKAP95 (V. M. Coghlan, L. K. Langeberg, A. Fernandez, N. J. Lamb, and J. D. Scott (1994)J. Biol. Chem.269, 7658–7665). The gene encoding AKAP95 was mapped to human chromosome 19p13.1-q12 using somatic cell hybrids and PCR. A fragment covering amino acids 414–692 of human AKAP95 was expressed inEscherichia coliand shown to bind RIIα. Competition with a peptide covering the RII-binding domain of AKAP Ht31 abolished RIIα binding to AKAP95. Immunofluorescence studies in quiescent human Hs-68 fibroblasts showed a nuclear localization of AKAP95, whereas RIIα was excluded from the nucleus. In contrast, during mitosis AKAP95 staining was markedly changed and appeared to be excluded from the condensed chromatin and localized outside the metaphase plate. Furthermore, the subcellular localizations of AKAP95 and RIIα overlapped in metaphase but started to segregate in anaphase and were again separated as AKAP95 reentered the nucleus in telophase. Finally, RIIα was coimmunoprecipitated with AKAP95 from HeLa cells arrested in mitosis, but not from interphase HeLa cells, demonstrating a physical association between these two molecules during mitosis. The results show a distinct redistribution of AKAP95 during mitosis, suggesting that the interaction between AKAP95 and RIIα may be cell cycle-dependent.
doi_str_mv 10.1006/excr.1997.3855
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79704328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014482797938556</els_id><sourcerecordid>79704328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-87a332c84035c867b7aea6a4627d61cd760d300f5ce57707250f457f3fd9435f3</originalsourceid><addsrcrecordid>eNp1kMFu1DAQhi0EKtvClRuST5yaZRLbsXNcpbSgLmol4Gx57QlrlNiLnSDKE_Sxm7Arbpw88vzz2fMR8qaEdQlQv8ffNq3LppFrpoR4RlYlNFBUvKqekxVAyQuuKvmSnOf8AwCUKuszctZwyRhTK_L4OfZop94k2vYx-PD9krb7FIeY42B6uo3W9P6PGX0Ml9QER1vse9o-2B6LKzxgcBhG-mXa2fn-L-fK5zH53bSM0NjRcY90U9z6YPJcBLuPaX6G3qc4op-hm9vNfSNekRed6TO-Pp0X5Nv1h6_tx2J7d_Op3WwLy0GMhZKGscoqDkxYVcudNGhqw-tKurq0TtbgGEAnLAopQVYCOi5kxzrXcCY6dkHeHbmHFH9OmEc9-Lz83QSMU9aykcBZpebg-hi0KeacsNOH5AeTHnQJelGvF_V6Ua8X9fPA2xN52g3o_sVPrue-OvZxXu-Xx6Sz9RgsOp_QjtpF_z_0E5tlkwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79704328</pqid></control><display><type>article</type><title>Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Eide, Turid ; Coghlan, Vince ; Ørstavik, Sigurd ; Holsve, Christian ; Solberg, Rigmor ; Skålhegg, Bjørn S. ; Lamb, Ned J.C. ; Langeberg, Lorene ; Fernandez, Anne ; Scott, John D. ; Jahnsen, Tore ; Taskén, Kjetil</creator><creatorcontrib>Eide, Turid ; Coghlan, Vince ; Ørstavik, Sigurd ; Holsve, Christian ; Solberg, Rigmor ; Skålhegg, Bjørn S. ; Lamb, Ned J.C. ; Langeberg, Lorene ; Fernandez, Anne ; Scott, John D. ; Jahnsen, Tore ; Taskén, Kjetil</creatorcontrib><description>The cyclic AMP-dependent protein kinase (PKA) type II is directed to different subcellular loci through interaction of the RII subunits with A-kinase anchoring proteins (AKAPs). A full-length human clone encoding AKAP95 was identified and sequenced, and revealed a 692-amino acid open reading frame that was 89% homologous to the rat AKAP95 (V. M. Coghlan, L. K. Langeberg, A. Fernandez, N. J. Lamb, and J. D. Scott (1994)J. Biol. Chem.269, 7658–7665). The gene encoding AKAP95 was mapped to human chromosome 19p13.1-q12 using somatic cell hybrids and PCR. A fragment covering amino acids 414–692 of human AKAP95 was expressed inEscherichia coliand shown to bind RIIα. Competition with a peptide covering the RII-binding domain of AKAP Ht31 abolished RIIα binding to AKAP95. Immunofluorescence studies in quiescent human Hs-68 fibroblasts showed a nuclear localization of AKAP95, whereas RIIα was excluded from the nucleus. In contrast, during mitosis AKAP95 staining was markedly changed and appeared to be excluded from the condensed chromatin and localized outside the metaphase plate. Furthermore, the subcellular localizations of AKAP95 and RIIα overlapped in metaphase but started to segregate in anaphase and were again separated as AKAP95 reentered the nucleus in telophase. Finally, RIIα was coimmunoprecipitated with AKAP95 from HeLa cells arrested in mitosis, but not from interphase HeLa cells, demonstrating a physical association between these two molecules during mitosis. The results show a distinct redistribution of AKAP95 during mitosis, suggesting that the interaction between AKAP95 and RIIα may be cell cycle-dependent.</description><identifier>ISSN: 0014-4827</identifier><identifier>EISSN: 1090-2422</identifier><identifier>DOI: 10.1006/excr.1997.3855</identifier><identifier>PMID: 9473338</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AKAP ; Amino Acid Sequence ; anchoring protein ; Base Sequence ; cAMP ; cell cycle ; Cell Cycle - genetics ; Cell Line ; Cell Nucleus - chemistry ; Chromosome Mapping ; Chromosomes, Human, Pair 19 - genetics ; Cloning, Molecular ; Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit ; Cyclic AMP-Dependent Protein Kinase Type II ; Cyclic AMP-Dependent Protein Kinases - analysis ; Cyclic AMP-Dependent Protein Kinases - metabolism ; DNA, Complementary - genetics ; DNA-Binding Proteins - analysis ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Fibroblasts ; HeLa Cells ; Humans ; Interphase - genetics ; Intracellular Signaling Peptides and Proteins ; mitosis ; Mitosis - genetics ; Molecular Sequence Data ; Nuclear Proteins - analysis ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Organ Specificity ; protein kinase A ; RNA, Messenger - analysis ; Sequence Homology, Amino Acid ; Zinc Fingers - genetics</subject><ispartof>Experimental cell research, 1998-02, Vol.238 (2), p.305-316</ispartof><rights>1998 Academic Press</rights><rights>Copyright 1998 Academic Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-87a332c84035c867b7aea6a4627d61cd760d300f5ce57707250f457f3fd9435f3</citedby><cites>FETCH-LOGICAL-c405t-87a332c84035c867b7aea6a4627d61cd760d300f5ce57707250f457f3fd9435f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014482797938556$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9473338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eide, Turid</creatorcontrib><creatorcontrib>Coghlan, Vince</creatorcontrib><creatorcontrib>Ørstavik, Sigurd</creatorcontrib><creatorcontrib>Holsve, Christian</creatorcontrib><creatorcontrib>Solberg, Rigmor</creatorcontrib><creatorcontrib>Skålhegg, Bjørn S.</creatorcontrib><creatorcontrib>Lamb, Ned J.C.</creatorcontrib><creatorcontrib>Langeberg, Lorene</creatorcontrib><creatorcontrib>Fernandez, Anne</creatorcontrib><creatorcontrib>Scott, John D.</creatorcontrib><creatorcontrib>Jahnsen, Tore</creatorcontrib><creatorcontrib>Taskén, Kjetil</creatorcontrib><title>Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95</title><title>Experimental cell research</title><addtitle>Exp Cell Res</addtitle><description>The cyclic AMP-dependent protein kinase (PKA) type II is directed to different subcellular loci through interaction of the RII subunits with A-kinase anchoring proteins (AKAPs). A full-length human clone encoding AKAP95 was identified and sequenced, and revealed a 692-amino acid open reading frame that was 89% homologous to the rat AKAP95 (V. M. Coghlan, L. K. Langeberg, A. Fernandez, N. J. Lamb, and J. D. Scott (1994)J. Biol. Chem.269, 7658–7665). The gene encoding AKAP95 was mapped to human chromosome 19p13.1-q12 using somatic cell hybrids and PCR. A fragment covering amino acids 414–692 of human AKAP95 was expressed inEscherichia coliand shown to bind RIIα. Competition with a peptide covering the RII-binding domain of AKAP Ht31 abolished RIIα binding to AKAP95. Immunofluorescence studies in quiescent human Hs-68 fibroblasts showed a nuclear localization of AKAP95, whereas RIIα was excluded from the nucleus. In contrast, during mitosis AKAP95 staining was markedly changed and appeared to be excluded from the condensed chromatin and localized outside the metaphase plate. Furthermore, the subcellular localizations of AKAP95 and RIIα overlapped in metaphase but started to segregate in anaphase and were again separated as AKAP95 reentered the nucleus in telophase. Finally, RIIα was coimmunoprecipitated with AKAP95 from HeLa cells arrested in mitosis, but not from interphase HeLa cells, demonstrating a physical association between these two molecules during mitosis. The results show a distinct redistribution of AKAP95 during mitosis, suggesting that the interaction between AKAP95 and RIIα may be cell cycle-dependent.</description><subject>AKAP</subject><subject>Amino Acid Sequence</subject><subject>anchoring protein</subject><subject>Base Sequence</subject><subject>cAMP</subject><subject>cell cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell Line</subject><subject>Cell Nucleus - chemistry</subject><subject>Chromosome Mapping</subject><subject>Chromosomes, Human, Pair 19 - genetics</subject><subject>Cloning, Molecular</subject><subject>Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit</subject><subject>Cyclic AMP-Dependent Protein Kinase Type II</subject><subject>Cyclic AMP-Dependent Protein Kinases - analysis</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>DNA, Complementary - genetics</subject><subject>DNA-Binding Proteins - analysis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fibroblasts</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Interphase - genetics</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>mitosis</subject><subject>Mitosis - genetics</subject><subject>Molecular Sequence Data</subject><subject>Nuclear Proteins - analysis</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Organ Specificity</subject><subject>protein kinase A</subject><subject>RNA, Messenger - analysis</subject><subject>Sequence Homology, Amino Acid</subject><subject>Zinc Fingers - genetics</subject><issn>0014-4827</issn><issn>1090-2422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFu1DAQhi0EKtvClRuST5yaZRLbsXNcpbSgLmol4Gx57QlrlNiLnSDKE_Sxm7Arbpw88vzz2fMR8qaEdQlQv8ffNq3LppFrpoR4RlYlNFBUvKqekxVAyQuuKvmSnOf8AwCUKuszctZwyRhTK_L4OfZop94k2vYx-PD9krb7FIeY42B6uo3W9P6PGX0Ml9QER1vse9o-2B6LKzxgcBhG-mXa2fn-L-fK5zH53bSM0NjRcY90U9z6YPJcBLuPaX6G3qc4op-hm9vNfSNekRed6TO-Pp0X5Nv1h6_tx2J7d_Op3WwLy0GMhZKGscoqDkxYVcudNGhqw-tKurq0TtbgGEAnLAopQVYCOi5kxzrXcCY6dkHeHbmHFH9OmEc9-Lz83QSMU9aykcBZpebg-hi0KeacsNOH5AeTHnQJelGvF_V6Ua8X9fPA2xN52g3o_sVPrue-OvZxXu-Xx6Sz9RgsOp_QjtpF_z_0E5tlkwM</recordid><startdate>19980201</startdate><enddate>19980201</enddate><creator>Eide, Turid</creator><creator>Coghlan, Vince</creator><creator>Ørstavik, Sigurd</creator><creator>Holsve, Christian</creator><creator>Solberg, Rigmor</creator><creator>Skålhegg, Bjørn S.</creator><creator>Lamb, Ned J.C.</creator><creator>Langeberg, Lorene</creator><creator>Fernandez, Anne</creator><creator>Scott, John D.</creator><creator>Jahnsen, Tore</creator><creator>Taskén, Kjetil</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980201</creationdate><title>Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95</title><author>Eide, Turid ; Coghlan, Vince ; Ørstavik, Sigurd ; Holsve, Christian ; Solberg, Rigmor ; Skålhegg, Bjørn S. ; Lamb, Ned J.C. ; Langeberg, Lorene ; Fernandez, Anne ; Scott, John D. ; Jahnsen, Tore ; Taskén, Kjetil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-87a332c84035c867b7aea6a4627d61cd760d300f5ce57707250f457f3fd9435f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>AKAP</topic><topic>Amino Acid Sequence</topic><topic>anchoring protein</topic><topic>Base Sequence</topic><topic>cAMP</topic><topic>cell cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell Line</topic><topic>Cell Nucleus - chemistry</topic><topic>Chromosome Mapping</topic><topic>Chromosomes, Human, Pair 19 - genetics</topic><topic>Cloning, Molecular</topic><topic>Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit</topic><topic>Cyclic AMP-Dependent Protein Kinase Type II</topic><topic>Cyclic AMP-Dependent Protein Kinases - analysis</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>DNA, Complementary - genetics</topic><topic>DNA-Binding Proteins - analysis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fibroblasts</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Interphase - genetics</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>mitosis</topic><topic>Mitosis - genetics</topic><topic>Molecular Sequence Data</topic><topic>Nuclear Proteins - analysis</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Organ Specificity</topic><topic>protein kinase A</topic><topic>RNA, Messenger - analysis</topic><topic>Sequence Homology, Amino Acid</topic><topic>Zinc Fingers - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eide, Turid</creatorcontrib><creatorcontrib>Coghlan, Vince</creatorcontrib><creatorcontrib>Ørstavik, Sigurd</creatorcontrib><creatorcontrib>Holsve, Christian</creatorcontrib><creatorcontrib>Solberg, Rigmor</creatorcontrib><creatorcontrib>Skålhegg, Bjørn S.</creatorcontrib><creatorcontrib>Lamb, Ned J.C.</creatorcontrib><creatorcontrib>Langeberg, Lorene</creatorcontrib><creatorcontrib>Fernandez, Anne</creatorcontrib><creatorcontrib>Scott, John D.</creatorcontrib><creatorcontrib>Jahnsen, Tore</creatorcontrib><creatorcontrib>Taskén, Kjetil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eide, Turid</au><au>Coghlan, Vince</au><au>Ørstavik, Sigurd</au><au>Holsve, Christian</au><au>Solberg, Rigmor</au><au>Skålhegg, Bjørn S.</au><au>Lamb, Ned J.C.</au><au>Langeberg, Lorene</au><au>Fernandez, Anne</au><au>Scott, John D.</au><au>Jahnsen, Tore</au><au>Taskén, Kjetil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95</atitle><jtitle>Experimental cell research</jtitle><addtitle>Exp Cell Res</addtitle><date>1998-02-01</date><risdate>1998</risdate><volume>238</volume><issue>2</issue><spage>305</spage><epage>316</epage><pages>305-316</pages><issn>0014-4827</issn><eissn>1090-2422</eissn><abstract>The cyclic AMP-dependent protein kinase (PKA) type II is directed to different subcellular loci through interaction of the RII subunits with A-kinase anchoring proteins (AKAPs). A full-length human clone encoding AKAP95 was identified and sequenced, and revealed a 692-amino acid open reading frame that was 89% homologous to the rat AKAP95 (V. M. Coghlan, L. K. Langeberg, A. Fernandez, N. J. Lamb, and J. D. Scott (1994)J. Biol. Chem.269, 7658–7665). The gene encoding AKAP95 was mapped to human chromosome 19p13.1-q12 using somatic cell hybrids and PCR. A fragment covering amino acids 414–692 of human AKAP95 was expressed inEscherichia coliand shown to bind RIIα. Competition with a peptide covering the RII-binding domain of AKAP Ht31 abolished RIIα binding to AKAP95. Immunofluorescence studies in quiescent human Hs-68 fibroblasts showed a nuclear localization of AKAP95, whereas RIIα was excluded from the nucleus. In contrast, during mitosis AKAP95 staining was markedly changed and appeared to be excluded from the condensed chromatin and localized outside the metaphase plate. Furthermore, the subcellular localizations of AKAP95 and RIIα overlapped in metaphase but started to segregate in anaphase and were again separated as AKAP95 reentered the nucleus in telophase. Finally, RIIα was coimmunoprecipitated with AKAP95 from HeLa cells arrested in mitosis, but not from interphase HeLa cells, demonstrating a physical association between these two molecules during mitosis. The results show a distinct redistribution of AKAP95 during mitosis, suggesting that the interaction between AKAP95 and RIIα may be cell cycle-dependent.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9473338</pmid><doi>10.1006/excr.1997.3855</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-4827
ispartof Experimental cell research, 1998-02, Vol.238 (2), p.305-316
issn 0014-4827
1090-2422
language eng
recordid cdi_proquest_miscellaneous_79704328
source MEDLINE; Elsevier ScienceDirect Journals
subjects AKAP
Amino Acid Sequence
anchoring protein
Base Sequence
cAMP
cell cycle
Cell Cycle - genetics
Cell Line
Cell Nucleus - chemistry
Chromosome Mapping
Chromosomes, Human, Pair 19 - genetics
Cloning, Molecular
Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit
Cyclic AMP-Dependent Protein Kinase Type II
Cyclic AMP-Dependent Protein Kinases - analysis
Cyclic AMP-Dependent Protein Kinases - metabolism
DNA, Complementary - genetics
DNA-Binding Proteins - analysis
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Fibroblasts
HeLa Cells
Humans
Interphase - genetics
Intracellular Signaling Peptides and Proteins
mitosis
Mitosis - genetics
Molecular Sequence Data
Nuclear Proteins - analysis
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Organ Specificity
protein kinase A
RNA, Messenger - analysis
Sequence Homology, Amino Acid
Zinc Fingers - genetics
title Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Cloning,%20Chromosomal%20Localization,%20and%20Cell%20Cycle-Dependent%20Subcellular%20Distribution%20of%20the%20A-Kinase%20Anchoring%20Protein,%20AKAP95&rft.jtitle=Experimental%20cell%20research&rft.au=Eide,%20Turid&rft.date=1998-02-01&rft.volume=238&rft.issue=2&rft.spage=305&rft.epage=316&rft.pages=305-316&rft.issn=0014-4827&rft.eissn=1090-2422&rft_id=info:doi/10.1006/excr.1997.3855&rft_dat=%3Cproquest_cross%3E79704328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79704328&rft_id=info:pmid/9473338&rft_els_id=S0014482797938556&rfr_iscdi=true