Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95
The cyclic AMP-dependent protein kinase (PKA) type II is directed to different subcellular loci through interaction of the RII subunits with A-kinase anchoring proteins (AKAPs). A full-length human clone encoding AKAP95 was identified and sequenced, and revealed a 692-amino acid open reading frame t...
Gespeichert in:
Veröffentlicht in: | Experimental cell research 1998-02, Vol.238 (2), p.305-316 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | 2 |
container_start_page | 305 |
container_title | Experimental cell research |
container_volume | 238 |
creator | Eide, Turid Coghlan, Vince Ørstavik, Sigurd Holsve, Christian Solberg, Rigmor Skålhegg, Bjørn S. Lamb, Ned J.C. Langeberg, Lorene Fernandez, Anne Scott, John D. Jahnsen, Tore Taskén, Kjetil |
description | The cyclic AMP-dependent protein kinase (PKA) type II is directed to different subcellular loci through interaction of the RII subunits with A-kinase anchoring proteins (AKAPs). A full-length human clone encoding AKAP95 was identified and sequenced, and revealed a 692-amino acid open reading frame that was 89% homologous to the rat AKAP95 (V. M. Coghlan, L. K. Langeberg, A. Fernandez, N. J. Lamb, and J. D. Scott (1994)J. Biol. Chem.269, 7658–7665). The gene encoding AKAP95 was mapped to human chromosome 19p13.1-q12 using somatic cell hybrids and PCR. A fragment covering amino acids 414–692 of human AKAP95 was expressed inEscherichia coliand shown to bind RIIα. Competition with a peptide covering the RII-binding domain of AKAP Ht31 abolished RIIα binding to AKAP95. Immunofluorescence studies in quiescent human Hs-68 fibroblasts showed a nuclear localization of AKAP95, whereas RIIα was excluded from the nucleus. In contrast, during mitosis AKAP95 staining was markedly changed and appeared to be excluded from the condensed chromatin and localized outside the metaphase plate. Furthermore, the subcellular localizations of AKAP95 and RIIα overlapped in metaphase but started to segregate in anaphase and were again separated as AKAP95 reentered the nucleus in telophase. Finally, RIIα was coimmunoprecipitated with AKAP95 from HeLa cells arrested in mitosis, but not from interphase HeLa cells, demonstrating a physical association between these two molecules during mitosis. The results show a distinct redistribution of AKAP95 during mitosis, suggesting that the interaction between AKAP95 and RIIα may be cell cycle-dependent. |
doi_str_mv | 10.1006/excr.1997.3855 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79704328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014482797938556</els_id><sourcerecordid>79704328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-87a332c84035c867b7aea6a4627d61cd760d300f5ce57707250f457f3fd9435f3</originalsourceid><addsrcrecordid>eNp1kMFu1DAQhi0EKtvClRuST5yaZRLbsXNcpbSgLmol4Gx57QlrlNiLnSDKE_Sxm7Arbpw88vzz2fMR8qaEdQlQv8ffNq3LppFrpoR4RlYlNFBUvKqekxVAyQuuKvmSnOf8AwCUKuszctZwyRhTK_L4OfZop94k2vYx-PD9krb7FIeY42B6uo3W9P6PGX0Ml9QER1vse9o-2B6LKzxgcBhG-mXa2fn-L-fK5zH53bSM0NjRcY90U9z6YPJcBLuPaX6G3qc4op-hm9vNfSNekRed6TO-Pp0X5Nv1h6_tx2J7d_Op3WwLy0GMhZKGscoqDkxYVcudNGhqw-tKurq0TtbgGEAnLAopQVYCOi5kxzrXcCY6dkHeHbmHFH9OmEc9-Lz83QSMU9aykcBZpebg-hi0KeacsNOH5AeTHnQJelGvF_V6Ua8X9fPA2xN52g3o_sVPrue-OvZxXu-Xx6Sz9RgsOp_QjtpF_z_0E5tlkwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79704328</pqid></control><display><type>article</type><title>Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Eide, Turid ; Coghlan, Vince ; Ørstavik, Sigurd ; Holsve, Christian ; Solberg, Rigmor ; Skålhegg, Bjørn S. ; Lamb, Ned J.C. ; Langeberg, Lorene ; Fernandez, Anne ; Scott, John D. ; Jahnsen, Tore ; Taskén, Kjetil</creator><creatorcontrib>Eide, Turid ; Coghlan, Vince ; Ørstavik, Sigurd ; Holsve, Christian ; Solberg, Rigmor ; Skålhegg, Bjørn S. ; Lamb, Ned J.C. ; Langeberg, Lorene ; Fernandez, Anne ; Scott, John D. ; Jahnsen, Tore ; Taskén, Kjetil</creatorcontrib><description>The cyclic AMP-dependent protein kinase (PKA) type II is directed to different subcellular loci through interaction of the RII subunits with A-kinase anchoring proteins (AKAPs). A full-length human clone encoding AKAP95 was identified and sequenced, and revealed a 692-amino acid open reading frame that was 89% homologous to the rat AKAP95 (V. M. Coghlan, L. K. Langeberg, A. Fernandez, N. J. Lamb, and J. D. Scott (1994)J. Biol. Chem.269, 7658–7665). The gene encoding AKAP95 was mapped to human chromosome 19p13.1-q12 using somatic cell hybrids and PCR. A fragment covering amino acids 414–692 of human AKAP95 was expressed inEscherichia coliand shown to bind RIIα. Competition with a peptide covering the RII-binding domain of AKAP Ht31 abolished RIIα binding to AKAP95. Immunofluorescence studies in quiescent human Hs-68 fibroblasts showed a nuclear localization of AKAP95, whereas RIIα was excluded from the nucleus. In contrast, during mitosis AKAP95 staining was markedly changed and appeared to be excluded from the condensed chromatin and localized outside the metaphase plate. Furthermore, the subcellular localizations of AKAP95 and RIIα overlapped in metaphase but started to segregate in anaphase and were again separated as AKAP95 reentered the nucleus in telophase. Finally, RIIα was coimmunoprecipitated with AKAP95 from HeLa cells arrested in mitosis, but not from interphase HeLa cells, demonstrating a physical association between these two molecules during mitosis. The results show a distinct redistribution of AKAP95 during mitosis, suggesting that the interaction between AKAP95 and RIIα may be cell cycle-dependent.</description><identifier>ISSN: 0014-4827</identifier><identifier>EISSN: 1090-2422</identifier><identifier>DOI: 10.1006/excr.1997.3855</identifier><identifier>PMID: 9473338</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>AKAP ; Amino Acid Sequence ; anchoring protein ; Base Sequence ; cAMP ; cell cycle ; Cell Cycle - genetics ; Cell Line ; Cell Nucleus - chemistry ; Chromosome Mapping ; Chromosomes, Human, Pair 19 - genetics ; Cloning, Molecular ; Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit ; Cyclic AMP-Dependent Protein Kinase Type II ; Cyclic AMP-Dependent Protein Kinases - analysis ; Cyclic AMP-Dependent Protein Kinases - metabolism ; DNA, Complementary - genetics ; DNA-Binding Proteins - analysis ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Fibroblasts ; HeLa Cells ; Humans ; Interphase - genetics ; Intracellular Signaling Peptides and Proteins ; mitosis ; Mitosis - genetics ; Molecular Sequence Data ; Nuclear Proteins - analysis ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Organ Specificity ; protein kinase A ; RNA, Messenger - analysis ; Sequence Homology, Amino Acid ; Zinc Fingers - genetics</subject><ispartof>Experimental cell research, 1998-02, Vol.238 (2), p.305-316</ispartof><rights>1998 Academic Press</rights><rights>Copyright 1998 Academic Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-87a332c84035c867b7aea6a4627d61cd760d300f5ce57707250f457f3fd9435f3</citedby><cites>FETCH-LOGICAL-c405t-87a332c84035c867b7aea6a4627d61cd760d300f5ce57707250f457f3fd9435f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014482797938556$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9473338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eide, Turid</creatorcontrib><creatorcontrib>Coghlan, Vince</creatorcontrib><creatorcontrib>Ørstavik, Sigurd</creatorcontrib><creatorcontrib>Holsve, Christian</creatorcontrib><creatorcontrib>Solberg, Rigmor</creatorcontrib><creatorcontrib>Skålhegg, Bjørn S.</creatorcontrib><creatorcontrib>Lamb, Ned J.C.</creatorcontrib><creatorcontrib>Langeberg, Lorene</creatorcontrib><creatorcontrib>Fernandez, Anne</creatorcontrib><creatorcontrib>Scott, John D.</creatorcontrib><creatorcontrib>Jahnsen, Tore</creatorcontrib><creatorcontrib>Taskén, Kjetil</creatorcontrib><title>Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95</title><title>Experimental cell research</title><addtitle>Exp Cell Res</addtitle><description>The cyclic AMP-dependent protein kinase (PKA) type II is directed to different subcellular loci through interaction of the RII subunits with A-kinase anchoring proteins (AKAPs). A full-length human clone encoding AKAP95 was identified and sequenced, and revealed a 692-amino acid open reading frame that was 89% homologous to the rat AKAP95 (V. M. Coghlan, L. K. Langeberg, A. Fernandez, N. J. Lamb, and J. D. Scott (1994)J. Biol. Chem.269, 7658–7665). The gene encoding AKAP95 was mapped to human chromosome 19p13.1-q12 using somatic cell hybrids and PCR. A fragment covering amino acids 414–692 of human AKAP95 was expressed inEscherichia coliand shown to bind RIIα. Competition with a peptide covering the RII-binding domain of AKAP Ht31 abolished RIIα binding to AKAP95. Immunofluorescence studies in quiescent human Hs-68 fibroblasts showed a nuclear localization of AKAP95, whereas RIIα was excluded from the nucleus. In contrast, during mitosis AKAP95 staining was markedly changed and appeared to be excluded from the condensed chromatin and localized outside the metaphase plate. Furthermore, the subcellular localizations of AKAP95 and RIIα overlapped in metaphase but started to segregate in anaphase and were again separated as AKAP95 reentered the nucleus in telophase. Finally, RIIα was coimmunoprecipitated with AKAP95 from HeLa cells arrested in mitosis, but not from interphase HeLa cells, demonstrating a physical association between these two molecules during mitosis. The results show a distinct redistribution of AKAP95 during mitosis, suggesting that the interaction between AKAP95 and RIIα may be cell cycle-dependent.</description><subject>AKAP</subject><subject>Amino Acid Sequence</subject><subject>anchoring protein</subject><subject>Base Sequence</subject><subject>cAMP</subject><subject>cell cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell Line</subject><subject>Cell Nucleus - chemistry</subject><subject>Chromosome Mapping</subject><subject>Chromosomes, Human, Pair 19 - genetics</subject><subject>Cloning, Molecular</subject><subject>Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit</subject><subject>Cyclic AMP-Dependent Protein Kinase Type II</subject><subject>Cyclic AMP-Dependent Protein Kinases - analysis</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>DNA, Complementary - genetics</subject><subject>DNA-Binding Proteins - analysis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fibroblasts</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Interphase - genetics</subject><subject>Intracellular Signaling Peptides and Proteins</subject><subject>mitosis</subject><subject>Mitosis - genetics</subject><subject>Molecular Sequence Data</subject><subject>Nuclear Proteins - analysis</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Organ Specificity</subject><subject>protein kinase A</subject><subject>RNA, Messenger - analysis</subject><subject>Sequence Homology, Amino Acid</subject><subject>Zinc Fingers - genetics</subject><issn>0014-4827</issn><issn>1090-2422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFu1DAQhi0EKtvClRuST5yaZRLbsXNcpbSgLmol4Gx57QlrlNiLnSDKE_Sxm7Arbpw88vzz2fMR8qaEdQlQv8ffNq3LppFrpoR4RlYlNFBUvKqekxVAyQuuKvmSnOf8AwCUKuszctZwyRhTK_L4OfZop94k2vYx-PD9krb7FIeY42B6uo3W9P6PGX0Ml9QER1vse9o-2B6LKzxgcBhG-mXa2fn-L-fK5zH53bSM0NjRcY90U9z6YPJcBLuPaX6G3qc4op-hm9vNfSNekRed6TO-Pp0X5Nv1h6_tx2J7d_Op3WwLy0GMhZKGscoqDkxYVcudNGhqw-tKurq0TtbgGEAnLAopQVYCOi5kxzrXcCY6dkHeHbmHFH9OmEc9-Lz83QSMU9aykcBZpebg-hi0KeacsNOH5AeTHnQJelGvF_V6Ua8X9fPA2xN52g3o_sVPrue-OvZxXu-Xx6Sz9RgsOp_QjtpF_z_0E5tlkwM</recordid><startdate>19980201</startdate><enddate>19980201</enddate><creator>Eide, Turid</creator><creator>Coghlan, Vince</creator><creator>Ørstavik, Sigurd</creator><creator>Holsve, Christian</creator><creator>Solberg, Rigmor</creator><creator>Skålhegg, Bjørn S.</creator><creator>Lamb, Ned J.C.</creator><creator>Langeberg, Lorene</creator><creator>Fernandez, Anne</creator><creator>Scott, John D.</creator><creator>Jahnsen, Tore</creator><creator>Taskén, Kjetil</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19980201</creationdate><title>Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95</title><author>Eide, Turid ; Coghlan, Vince ; Ørstavik, Sigurd ; Holsve, Christian ; Solberg, Rigmor ; Skålhegg, Bjørn S. ; Lamb, Ned J.C. ; Langeberg, Lorene ; Fernandez, Anne ; Scott, John D. ; Jahnsen, Tore ; Taskén, Kjetil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-87a332c84035c867b7aea6a4627d61cd760d300f5ce57707250f457f3fd9435f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>AKAP</topic><topic>Amino Acid Sequence</topic><topic>anchoring protein</topic><topic>Base Sequence</topic><topic>cAMP</topic><topic>cell cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell Line</topic><topic>Cell Nucleus - chemistry</topic><topic>Chromosome Mapping</topic><topic>Chromosomes, Human, Pair 19 - genetics</topic><topic>Cloning, Molecular</topic><topic>Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit</topic><topic>Cyclic AMP-Dependent Protein Kinase Type II</topic><topic>Cyclic AMP-Dependent Protein Kinases - analysis</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>DNA, Complementary - genetics</topic><topic>DNA-Binding Proteins - analysis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fibroblasts</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Interphase - genetics</topic><topic>Intracellular Signaling Peptides and Proteins</topic><topic>mitosis</topic><topic>Mitosis - genetics</topic><topic>Molecular Sequence Data</topic><topic>Nuclear Proteins - analysis</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Organ Specificity</topic><topic>protein kinase A</topic><topic>RNA, Messenger - analysis</topic><topic>Sequence Homology, Amino Acid</topic><topic>Zinc Fingers - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eide, Turid</creatorcontrib><creatorcontrib>Coghlan, Vince</creatorcontrib><creatorcontrib>Ørstavik, Sigurd</creatorcontrib><creatorcontrib>Holsve, Christian</creatorcontrib><creatorcontrib>Solberg, Rigmor</creatorcontrib><creatorcontrib>Skålhegg, Bjørn S.</creatorcontrib><creatorcontrib>Lamb, Ned J.C.</creatorcontrib><creatorcontrib>Langeberg, Lorene</creatorcontrib><creatorcontrib>Fernandez, Anne</creatorcontrib><creatorcontrib>Scott, John D.</creatorcontrib><creatorcontrib>Jahnsen, Tore</creatorcontrib><creatorcontrib>Taskén, Kjetil</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eide, Turid</au><au>Coghlan, Vince</au><au>Ørstavik, Sigurd</au><au>Holsve, Christian</au><au>Solberg, Rigmor</au><au>Skålhegg, Bjørn S.</au><au>Lamb, Ned J.C.</au><au>Langeberg, Lorene</au><au>Fernandez, Anne</au><au>Scott, John D.</au><au>Jahnsen, Tore</au><au>Taskén, Kjetil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95</atitle><jtitle>Experimental cell research</jtitle><addtitle>Exp Cell Res</addtitle><date>1998-02-01</date><risdate>1998</risdate><volume>238</volume><issue>2</issue><spage>305</spage><epage>316</epage><pages>305-316</pages><issn>0014-4827</issn><eissn>1090-2422</eissn><abstract>The cyclic AMP-dependent protein kinase (PKA) type II is directed to different subcellular loci through interaction of the RII subunits with A-kinase anchoring proteins (AKAPs). A full-length human clone encoding AKAP95 was identified and sequenced, and revealed a 692-amino acid open reading frame that was 89% homologous to the rat AKAP95 (V. M. Coghlan, L. K. Langeberg, A. Fernandez, N. J. Lamb, and J. D. Scott (1994)J. Biol. Chem.269, 7658–7665). The gene encoding AKAP95 was mapped to human chromosome 19p13.1-q12 using somatic cell hybrids and PCR. A fragment covering amino acids 414–692 of human AKAP95 was expressed inEscherichia coliand shown to bind RIIα. Competition with a peptide covering the RII-binding domain of AKAP Ht31 abolished RIIα binding to AKAP95. Immunofluorescence studies in quiescent human Hs-68 fibroblasts showed a nuclear localization of AKAP95, whereas RIIα was excluded from the nucleus. In contrast, during mitosis AKAP95 staining was markedly changed and appeared to be excluded from the condensed chromatin and localized outside the metaphase plate. Furthermore, the subcellular localizations of AKAP95 and RIIα overlapped in metaphase but started to segregate in anaphase and were again separated as AKAP95 reentered the nucleus in telophase. Finally, RIIα was coimmunoprecipitated with AKAP95 from HeLa cells arrested in mitosis, but not from interphase HeLa cells, demonstrating a physical association between these two molecules during mitosis. The results show a distinct redistribution of AKAP95 during mitosis, suggesting that the interaction between AKAP95 and RIIα may be cell cycle-dependent.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9473338</pmid><doi>10.1006/excr.1997.3855</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4827 |
ispartof | Experimental cell research, 1998-02, Vol.238 (2), p.305-316 |
issn | 0014-4827 1090-2422 |
language | eng |
recordid | cdi_proquest_miscellaneous_79704328 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | AKAP Amino Acid Sequence anchoring protein Base Sequence cAMP cell cycle Cell Cycle - genetics Cell Line Cell Nucleus - chemistry Chromosome Mapping Chromosomes, Human, Pair 19 - genetics Cloning, Molecular Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit Cyclic AMP-Dependent Protein Kinase Type II Cyclic AMP-Dependent Protein Kinases - analysis Cyclic AMP-Dependent Protein Kinases - metabolism DNA, Complementary - genetics DNA-Binding Proteins - analysis DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Fibroblasts HeLa Cells Humans Interphase - genetics Intracellular Signaling Peptides and Proteins mitosis Mitosis - genetics Molecular Sequence Data Nuclear Proteins - analysis Nuclear Proteins - genetics Nuclear Proteins - metabolism Organ Specificity protein kinase A RNA, Messenger - analysis Sequence Homology, Amino Acid Zinc Fingers - genetics |
title | Molecular Cloning, Chromosomal Localization, and Cell Cycle-Dependent Subcellular Distribution of the A-Kinase Anchoring Protein, AKAP95 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Cloning,%20Chromosomal%20Localization,%20and%20Cell%20Cycle-Dependent%20Subcellular%20Distribution%20of%20the%20A-Kinase%20Anchoring%20Protein,%20AKAP95&rft.jtitle=Experimental%20cell%20research&rft.au=Eide,%20Turid&rft.date=1998-02-01&rft.volume=238&rft.issue=2&rft.spage=305&rft.epage=316&rft.pages=305-316&rft.issn=0014-4827&rft.eissn=1090-2422&rft_id=info:doi/10.1006/excr.1997.3855&rft_dat=%3Cproquest_cross%3E79704328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79704328&rft_id=info:pmid/9473338&rft_els_id=S0014482797938556&rfr_iscdi=true |