Approximate Bayesian inference for random effects meta-analysis

Whilst meta‐analysis is becoming a more commonplace statistical technique, Bayesian inference in meta‐analysis requires complex computational techniques to be routinely applied. We consider simple approximations for the first and second moments of the parameters of a Bayesian random effects model fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 1998-01, Vol.17 (2), p.201-218
Hauptverfasser: Abrams, Keith, Sansó, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 218
container_issue 2
container_start_page 201
container_title Statistics in medicine
container_volume 17
creator Abrams, Keith
Sansó, Bruno
description Whilst meta‐analysis is becoming a more commonplace statistical technique, Bayesian inference in meta‐analysis requires complex computational techniques to be routinely applied. We consider simple approximations for the first and second moments of the parameters of a Bayesian random effects model for meta‐analysis. These computationally inexpensive methods are based on simple analytical formulae that provide an efficient tool for a qualitative analysis and a quick numerical estimation of posterior quantities. They are shown to lead to sensible approximations in two examples of meta‐analyses and to be in broad agreement with the more computationally intensive Gibbs sampling. © 1998 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/(SICI)1097-0258(19980130)17:2<201::AID-SIM736>3.0.CO;2-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79700446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16533080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3836-34fb1be53b22045800b9fe0a476d25796804daf38ef0ebdcc6a3a6c3f876d4ca3</originalsourceid><addsrcrecordid>eNqFkV-L1DAUxYMo67j6EYQ-iOw-dLxJ2iYdRR2ruxbWHWEUxZdLmibQtX_GpoM7396U1nlR2KdAzu8eDucQ8pbCkgKwF2fbPMvPKaQiBBbLM5qmEiiHcypW7BUDulqt8_fhNv8kePKaL2GZbV6yML1HFsej-2QBTIgwETR-SB45dwNAaczECTlJI8kFSxfkzXq367vbqlGDCd6pg3GVaoOqtaY3rTaB7fqgV23ZNYGx1ujBBY0ZVKhaVR9c5R6TB1bVzjyZ31Py9eLDl-xjeLW5zLP1Vai55EnII1vQwsS8YAyiWAIUqTWgIpGULBZpIiEqleXSWDBFqXWiuEo0t9IDkVb8lDyffH3aX3vjBmwqp01dq9Z0e4ciFQBRlNwJ0iTmHCR48PsE6r5zrjcWd72voT8gBRxHQBxHwLFPHPvEvyMgFcjQj4DoR8BpBOQImG28kHrrp3OGfdGY8mg8t-71Z7OunFa19QXryh0xRhnjdMR-TNjvqjaHf-Ldme6_4eYfbx5O5pUbzO3RXPU_MRFcxPjt-hI_X2xjuBYSGf8DfIC99Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16533080</pqid></control><display><type>article</type><title>Approximate Bayesian inference for random effects meta-analysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Abrams, Keith ; Sansó, Bruno</creator><creatorcontrib>Abrams, Keith ; Sansó, Bruno</creatorcontrib><description>Whilst meta‐analysis is becoming a more commonplace statistical technique, Bayesian inference in meta‐analysis requires complex computational techniques to be routinely applied. We consider simple approximations for the first and second moments of the parameters of a Bayesian random effects model for meta‐analysis. These computationally inexpensive methods are based on simple analytical formulae that provide an efficient tool for a qualitative analysis and a quick numerical estimation of posterior quantities. They are shown to lead to sensible approximations in two examples of meta‐analyses and to be in broad agreement with the more computationally intensive Gibbs sampling. © 1998 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/(SICI)1097-0258(19980130)17:2&lt;201::AID-SIM736&gt;3.0.CO;2-9</identifier><identifier>PMID: 9483729</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Antibiotic Prophylaxis ; Bayes Theorem ; Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Dental Caries - prevention &amp; control ; Dentifrices - therapeutic use ; Digestive System - microbiology ; Humans ; Logistic Models ; Medical computing and teaching ; Medical sciences ; Meta-Analysis as Topic ; Models, Statistical ; Odds Ratio</subject><ispartof>Statistics in medicine, 1998-01, Vol.17 (2), p.201-218</ispartof><rights>Copyright © 1998 John Wiley &amp; Sons, Ltd.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0258%2819980130%2917%3A2%3C201%3A%3AAID-SIM736%3E3.0.CO%3B2-9$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0258%2819980130%2917%3A2%3C201%3A%3AAID-SIM736%3E3.0.CO%3B2-9$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2122319$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9483729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abrams, Keith</creatorcontrib><creatorcontrib>Sansó, Bruno</creatorcontrib><title>Approximate Bayesian inference for random effects meta-analysis</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Whilst meta‐analysis is becoming a more commonplace statistical technique, Bayesian inference in meta‐analysis requires complex computational techniques to be routinely applied. We consider simple approximations for the first and second moments of the parameters of a Bayesian random effects model for meta‐analysis. These computationally inexpensive methods are based on simple analytical formulae that provide an efficient tool for a qualitative analysis and a quick numerical estimation of posterior quantities. They are shown to lead to sensible approximations in two examples of meta‐analyses and to be in broad agreement with the more computationally intensive Gibbs sampling. © 1998 John Wiley &amp; Sons, Ltd.</description><subject>Antibiotic Prophylaxis</subject><subject>Bayes Theorem</subject><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Dental Caries - prevention &amp; control</subject><subject>Dentifrices - therapeutic use</subject><subject>Digestive System - microbiology</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Medical computing and teaching</subject><subject>Medical sciences</subject><subject>Meta-Analysis as Topic</subject><subject>Models, Statistical</subject><subject>Odds Ratio</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV-L1DAUxYMo67j6EYQ-iOw-dLxJ2iYdRR2ruxbWHWEUxZdLmibQtX_GpoM7396U1nlR2KdAzu8eDucQ8pbCkgKwF2fbPMvPKaQiBBbLM5qmEiiHcypW7BUDulqt8_fhNv8kePKaL2GZbV6yML1HFsej-2QBTIgwETR-SB45dwNAaczECTlJI8kFSxfkzXq367vbqlGDCd6pg3GVaoOqtaY3rTaB7fqgV23ZNYGx1ujBBY0ZVKhaVR9c5R6TB1bVzjyZ31Py9eLDl-xjeLW5zLP1Vai55EnII1vQwsS8YAyiWAIUqTWgIpGULBZpIiEqleXSWDBFqXWiuEo0t9IDkVb8lDyffH3aX3vjBmwqp01dq9Z0e4ciFQBRlNwJ0iTmHCR48PsE6r5zrjcWd72voT8gBRxHQBxHwLFPHPvEvyMgFcjQj4DoR8BpBOQImG28kHrrp3OGfdGY8mg8t-71Z7OunFa19QXryh0xRhnjdMR-TNjvqjaHf-Ldme6_4eYfbx5O5pUbzO3RXPU_MRFcxPjt-hI_X2xjuBYSGf8DfIC99Q</recordid><startdate>19980130</startdate><enddate>19980130</enddate><creator>Abrams, Keith</creator><creator>Sansó, Bruno</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19980130</creationdate><title>Approximate Bayesian inference for random effects meta-analysis</title><author>Abrams, Keith ; Sansó, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3836-34fb1be53b22045800b9fe0a476d25796804daf38ef0ebdcc6a3a6c3f876d4ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Antibiotic Prophylaxis</topic><topic>Bayes Theorem</topic><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Dental Caries - prevention &amp; control</topic><topic>Dentifrices - therapeutic use</topic><topic>Digestive System - microbiology</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Medical computing and teaching</topic><topic>Medical sciences</topic><topic>Meta-Analysis as Topic</topic><topic>Models, Statistical</topic><topic>Odds Ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrams, Keith</creatorcontrib><creatorcontrib>Sansó, Bruno</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abrams, Keith</au><au>Sansó, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Bayesian inference for random effects meta-analysis</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>1998-01-30</date><risdate>1998</risdate><volume>17</volume><issue>2</issue><spage>201</spage><epage>218</epage><pages>201-218</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Whilst meta‐analysis is becoming a more commonplace statistical technique, Bayesian inference in meta‐analysis requires complex computational techniques to be routinely applied. We consider simple approximations for the first and second moments of the parameters of a Bayesian random effects model for meta‐analysis. These computationally inexpensive methods are based on simple analytical formulae that provide an efficient tool for a qualitative analysis and a quick numerical estimation of posterior quantities. They are shown to lead to sensible approximations in two examples of meta‐analyses and to be in broad agreement with the more computationally intensive Gibbs sampling. © 1998 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>9483729</pmid><doi>10.1002/(SICI)1097-0258(19980130)17:2&lt;201::AID-SIM736&gt;3.0.CO;2-9</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 1998-01, Vol.17 (2), p.201-218
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_79700446
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Antibiotic Prophylaxis
Bayes Theorem
Biological and medical sciences
Computerized, statistical medical data processing and models in biomedicine
Dental Caries - prevention & control
Dentifrices - therapeutic use
Digestive System - microbiology
Humans
Logistic Models
Medical computing and teaching
Medical sciences
Meta-Analysis as Topic
Models, Statistical
Odds Ratio
title Approximate Bayesian inference for random effects meta-analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Bayesian%20inference%20for%20random%20effects%20meta-analysis&rft.jtitle=Statistics%20in%20medicine&rft.au=Abrams,%20Keith&rft.date=1998-01-30&rft.volume=17&rft.issue=2&rft.spage=201&rft.epage=218&rft.pages=201-218&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/(SICI)1097-0258(19980130)17:2%3C201::AID-SIM736%3E3.0.CO;2-9&rft_dat=%3Cproquest_cross%3E16533080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16533080&rft_id=info:pmid/9483729&rfr_iscdi=true