Approximate Bayesian inference for random effects meta-analysis
Whilst meta‐analysis is becoming a more commonplace statistical technique, Bayesian inference in meta‐analysis requires complex computational techniques to be routinely applied. We consider simple approximations for the first and second moments of the parameters of a Bayesian random effects model fo...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 1998-01, Vol.17 (2), p.201-218 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | 2 |
container_start_page | 201 |
container_title | Statistics in medicine |
container_volume | 17 |
creator | Abrams, Keith Sansó, Bruno |
description | Whilst meta‐analysis is becoming a more commonplace statistical technique, Bayesian inference in meta‐analysis requires complex computational techniques to be routinely applied. We consider simple approximations for the first and second moments of the parameters of a Bayesian random effects model for meta‐analysis. These computationally inexpensive methods are based on simple analytical formulae that provide an efficient tool for a qualitative analysis and a quick numerical estimation of posterior quantities. They are shown to lead to sensible approximations in two examples of meta‐analyses and to be in broad agreement with the more computationally intensive Gibbs sampling. © 1998 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/(SICI)1097-0258(19980130)17:2<201::AID-SIM736>3.0.CO;2-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79700446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16533080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3836-34fb1be53b22045800b9fe0a476d25796804daf38ef0ebdcc6a3a6c3f876d4ca3</originalsourceid><addsrcrecordid>eNqFkV-L1DAUxYMo67j6EYQ-iOw-dLxJ2iYdRR2ruxbWHWEUxZdLmibQtX_GpoM7396U1nlR2KdAzu8eDucQ8pbCkgKwF2fbPMvPKaQiBBbLM5qmEiiHcypW7BUDulqt8_fhNv8kePKaL2GZbV6yML1HFsej-2QBTIgwETR-SB45dwNAaczECTlJI8kFSxfkzXq367vbqlGDCd6pg3GVaoOqtaY3rTaB7fqgV23ZNYGx1ujBBY0ZVKhaVR9c5R6TB1bVzjyZ31Py9eLDl-xjeLW5zLP1Vai55EnII1vQwsS8YAyiWAIUqTWgIpGULBZpIiEqleXSWDBFqXWiuEo0t9IDkVb8lDyffH3aX3vjBmwqp01dq9Z0e4ciFQBRlNwJ0iTmHCR48PsE6r5zrjcWd72voT8gBRxHQBxHwLFPHPvEvyMgFcjQj4DoR8BpBOQImG28kHrrp3OGfdGY8mg8t-71Z7OunFa19QXryh0xRhnjdMR-TNjvqjaHf-Ldme6_4eYfbx5O5pUbzO3RXPU_MRFcxPjt-hI_X2xjuBYSGf8DfIC99Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16533080</pqid></control><display><type>article</type><title>Approximate Bayesian inference for random effects meta-analysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Abrams, Keith ; Sansó, Bruno</creator><creatorcontrib>Abrams, Keith ; Sansó, Bruno</creatorcontrib><description>Whilst meta‐analysis is becoming a more commonplace statistical technique, Bayesian inference in meta‐analysis requires complex computational techniques to be routinely applied. We consider simple approximations for the first and second moments of the parameters of a Bayesian random effects model for meta‐analysis. These computationally inexpensive methods are based on simple analytical formulae that provide an efficient tool for a qualitative analysis and a quick numerical estimation of posterior quantities. They are shown to lead to sensible approximations in two examples of meta‐analyses and to be in broad agreement with the more computationally intensive Gibbs sampling. © 1998 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/(SICI)1097-0258(19980130)17:2<201::AID-SIM736>3.0.CO;2-9</identifier><identifier>PMID: 9483729</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Antibiotic Prophylaxis ; Bayes Theorem ; Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Dental Caries - prevention & control ; Dentifrices - therapeutic use ; Digestive System - microbiology ; Humans ; Logistic Models ; Medical computing and teaching ; Medical sciences ; Meta-Analysis as Topic ; Models, Statistical ; Odds Ratio</subject><ispartof>Statistics in medicine, 1998-01, Vol.17 (2), p.201-218</ispartof><rights>Copyright © 1998 John Wiley & Sons, Ltd.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0258%2819980130%2917%3A2%3C201%3A%3AAID-SIM736%3E3.0.CO%3B2-9$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0258%2819980130%2917%3A2%3C201%3A%3AAID-SIM736%3E3.0.CO%3B2-9$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2122319$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9483729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abrams, Keith</creatorcontrib><creatorcontrib>Sansó, Bruno</creatorcontrib><title>Approximate Bayesian inference for random effects meta-analysis</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Whilst meta‐analysis is becoming a more commonplace statistical technique, Bayesian inference in meta‐analysis requires complex computational techniques to be routinely applied. We consider simple approximations for the first and second moments of the parameters of a Bayesian random effects model for meta‐analysis. These computationally inexpensive methods are based on simple analytical formulae that provide an efficient tool for a qualitative analysis and a quick numerical estimation of posterior quantities. They are shown to lead to sensible approximations in two examples of meta‐analyses and to be in broad agreement with the more computationally intensive Gibbs sampling. © 1998 John Wiley & Sons, Ltd.</description><subject>Antibiotic Prophylaxis</subject><subject>Bayes Theorem</subject><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Dental Caries - prevention & control</subject><subject>Dentifrices - therapeutic use</subject><subject>Digestive System - microbiology</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Medical computing and teaching</subject><subject>Medical sciences</subject><subject>Meta-Analysis as Topic</subject><subject>Models, Statistical</subject><subject>Odds Ratio</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV-L1DAUxYMo67j6EYQ-iOw-dLxJ2iYdRR2ruxbWHWEUxZdLmibQtX_GpoM7396U1nlR2KdAzu8eDucQ8pbCkgKwF2fbPMvPKaQiBBbLM5qmEiiHcypW7BUDulqt8_fhNv8kePKaL2GZbV6yML1HFsej-2QBTIgwETR-SB45dwNAaczECTlJI8kFSxfkzXq367vbqlGDCd6pg3GVaoOqtaY3rTaB7fqgV23ZNYGx1ujBBY0ZVKhaVR9c5R6TB1bVzjyZ31Py9eLDl-xjeLW5zLP1Vai55EnII1vQwsS8YAyiWAIUqTWgIpGULBZpIiEqleXSWDBFqXWiuEo0t9IDkVb8lDyffH3aX3vjBmwqp01dq9Z0e4ciFQBRlNwJ0iTmHCR48PsE6r5zrjcWd72voT8gBRxHQBxHwLFPHPvEvyMgFcjQj4DoR8BpBOQImG28kHrrp3OGfdGY8mg8t-71Z7OunFa19QXryh0xRhnjdMR-TNjvqjaHf-Ldme6_4eYfbx5O5pUbzO3RXPU_MRFcxPjt-hI_X2xjuBYSGf8DfIC99Q</recordid><startdate>19980130</startdate><enddate>19980130</enddate><creator>Abrams, Keith</creator><creator>Sansó, Bruno</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19980130</creationdate><title>Approximate Bayesian inference for random effects meta-analysis</title><author>Abrams, Keith ; Sansó, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3836-34fb1be53b22045800b9fe0a476d25796804daf38ef0ebdcc6a3a6c3f876d4ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Antibiotic Prophylaxis</topic><topic>Bayes Theorem</topic><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Dental Caries - prevention & control</topic><topic>Dentifrices - therapeutic use</topic><topic>Digestive System - microbiology</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Medical computing and teaching</topic><topic>Medical sciences</topic><topic>Meta-Analysis as Topic</topic><topic>Models, Statistical</topic><topic>Odds Ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abrams, Keith</creatorcontrib><creatorcontrib>Sansó, Bruno</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abrams, Keith</au><au>Sansó, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate Bayesian inference for random effects meta-analysis</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>1998-01-30</date><risdate>1998</risdate><volume>17</volume><issue>2</issue><spage>201</spage><epage>218</epage><pages>201-218</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Whilst meta‐analysis is becoming a more commonplace statistical technique, Bayesian inference in meta‐analysis requires complex computational techniques to be routinely applied. We consider simple approximations for the first and second moments of the parameters of a Bayesian random effects model for meta‐analysis. These computationally inexpensive methods are based on simple analytical formulae that provide an efficient tool for a qualitative analysis and a quick numerical estimation of posterior quantities. They are shown to lead to sensible approximations in two examples of meta‐analyses and to be in broad agreement with the more computationally intensive Gibbs sampling. © 1998 John Wiley & Sons, Ltd.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>9483729</pmid><doi>10.1002/(SICI)1097-0258(19980130)17:2<201::AID-SIM736>3.0.CO;2-9</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 1998-01, Vol.17 (2), p.201-218 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_79700446 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Antibiotic Prophylaxis Bayes Theorem Biological and medical sciences Computerized, statistical medical data processing and models in biomedicine Dental Caries - prevention & control Dentifrices - therapeutic use Digestive System - microbiology Humans Logistic Models Medical computing and teaching Medical sciences Meta-Analysis as Topic Models, Statistical Odds Ratio |
title | Approximate Bayesian inference for random effects meta-analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A12%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20Bayesian%20inference%20for%20random%20effects%20meta-analysis&rft.jtitle=Statistics%20in%20medicine&rft.au=Abrams,%20Keith&rft.date=1998-01-30&rft.volume=17&rft.issue=2&rft.spage=201&rft.epage=218&rft.pages=201-218&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/(SICI)1097-0258(19980130)17:2%3C201::AID-SIM736%3E3.0.CO;2-9&rft_dat=%3Cproquest_cross%3E16533080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16533080&rft_id=info:pmid/9483729&rfr_iscdi=true |