Purification, Characterization, and Cloning of Enamel Matrix Serine Proteinase 1

The maturation of dental enamel succeeds the degradation of organic matrix. Inhibition studies have shown that this degradation is accomplished by a serine-type proteinase. To isolate and characterize cDNA clones encoding this proteinase, we used two degenerate primer approaches to amplify part of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dental research 1998-02, Vol.77 (2), p.377-386
Hauptverfasser: Simmer, J.P., Fukae, M., Tanabe, T., Yamakoshi, Y., Uchida, T., Xue, J., Margolis, H.C., Shimizu, M., DeHart, B.C., Hu, C.-C., Bartlett, J.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The maturation of dental enamel succeeds the degradation of organic matrix. Inhibition studies have shown that this degradation is accomplished by a serine-type proteinase. To isolate and characterize cDNA clones encoding this proteinase, we used two degenerate primer approaches to amplify part of the coding region using polymerase chain-reaction (PCR). First, we purified the proteinase from porcine transition-stage enamel matrix and characterized it by partial protein sequencing. The enzyme was isolated from the neutral soluble enamel extract by successive ammonium sulfate precipitations, hydroxyapatite HPLC, reverse-phase HPLC, DEAE ion exchange, and affinity chromatography with a Benzamidine Sepharose 6B column. The intact protein and lysylendopeptidase-generated cleavage products were characterized by amino acid sequence analyses. Degenerate oligonucleotide primers encoding two of the polypeptide sequences were synthesized. In a complementary strategy, degenerate oligonucleotide primers were designed against highly conserved active-site regions of chymotrypsin-like proteinases. Both approaches yielded PCR amplification products that served as probes for screening a porcine enamel organ epithelia-specific cDNA library. The longest full-length clone is 1133 nucleotides and encodes a preproprotein of 254 amino acids. We designate this protein enamel matrix serine proteinase 1 or EMSP1. The active protein has 224 amino acids, an isotope-averaged molecular mass of 24.1 kDa, and an isoelectric point of 6.0. Multiple-tissue Northern analysis indicates that EMSP1 is a tooth-specific protein. Gelatin enzymography shows a dramatic increase in EMSP1 activity in the transition-stage enamel matrix. EMSP1 is most homologous to kallikriens and trypsins.
ISSN:0022-0345
1544-0591
DOI:10.1177/00220345980770020601