Quantitative studies of human urinary excretion of uropontin

Quantitative studies of human urinary excretion of uropontin. Uropontin is the urinary form of osteopontin, an aspartic acid-rich phosphorylated glycoprotein. Uropontin has been previously shown to be a potent inhibitor of the nucleation, growth and aggregation of calcium oxalate crystals and the bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kidney international 1998-01, Vol.53 (1), p.189-193
Hauptverfasser: Min, Wei, Shiraga, Hiroshi, Chalko, Charles, Goldfarb, Stanley, Krishna, G. Gopal, Hoyer, John R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 1
container_start_page 189
container_title Kidney international
container_volume 53
creator Min, Wei
Shiraga, Hiroshi
Chalko, Charles
Goldfarb, Stanley
Krishna, G. Gopal
Hoyer, John R.
description Quantitative studies of human urinary excretion of uropontin. Uropontin is the urinary form of osteopontin, an aspartic acid-rich phosphorylated glycoprotein. Uropontin has been previously shown to be a potent inhibitor of the nucleation, growth and aggregation of calcium oxalate crystals and the binding of these crystals to renal epithelial cells. Quantitative data defining the excretion of this protein are necessary to determine its role in urinary stone formation. In the present studies, we determined uropontin excretion rates of normal humans. Urine samples were obtained under conditions of known dietary intake from young adult human volunteers with no history, radiographic or laboratory evidence of renal disease. Urinary concentrations of uropontin were measured by a sensitive ELISA employing an affinity purified polyclonal antiserum to uropontin. Thirteen normal subjects ingested a constant diet providing 1 gram of calcium, 1 gram of phosphorus, 150mEq of sodium and 1 gram of protein per kilogram of body wt per day during an eight day study period. The relationship of urinary volume to uropontin excretion was assessed by varying fluid intake on the last four days of the study to change the mean urine volume/24hr by > 500ml. Urine collected in six hour aliquots for eight days was analyzed for uropontin by ELISA, and for calcium, and creatinine. Daily uropontin excretion of 13 individual subjects was 3805 ± 1805 μg/24hr (mean ± 1 SD). The mean urinary levels (1.9 μg/ml) detected in the present study are sufficient for inhibition of crystallization; our previous studies have demonstrated that the nucleation, growth and aggregation of calcium oxalate crystals and their binding to renal cells in vitro are inhibited by this concentration of purified uropontin. In contrast to the regular pattern of diurnal variation of calcium excretion seen in most subjects, uropontin excretion showed no regularity of diurnal variation and was not directly related to either calcium or creatinine excretion or changes in urinary volume. However, uropontin concentration varied inversely with urine volume (P ≤ 0.001), so that the highest uropontin concentrations occurred when urine volume was the lowest. We conclude that the physiologic characteristic of an inverse relationship of uropontin concentration to urine volume favors protection from urinary crystallization of calcium oxalate by uropontin. Our quantitative definition of urinary uropontin excretion of normal adults pro
doi_str_mv 10.1046/j.1523-1755.1998.00745.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79673710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0085253815603805</els_id><sourcerecordid>79673710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-9a3a71b8f4a5112dda74ff1de23b9f87d91e16c66e5679e294afc53d724e7c083</originalsourceid><addsrcrecordid>eNqFkV2LEzEUhsOirLX6E4S5EO9mTCZfE_BGl113YUEEvQ5pcsKmtJmaj6X-ezO21EuvQnje9yR5glBH8EAwEx-3A-Ej7YnkfCBKTQPGkvHheIVWF_ACrTCeeD9yOr1Cr3Pe4rZXFF-ja8U4xUSu0Kfv1cQSiinhGbpcqguQu9l3T3VvYldTiCb97uBoE5QwxwXVNB_mVopv0Etvdhnentc1-nl3--Pmvn_89vXh5vNjbzkVpVeGGkk2k2eGEzI6ZyTznjgY6Ub5STpFgAgrBHAhFYyKGd-aTo4MpMUTXaMPp7mHNP-qkIveh2xhtzMR5pq1VEJSSXALTqegTXPOCbw-pLBvD9AE60Wc3urFj1786EWc_itOH1v13fmMutmDuxTPphp_f-YmW7PzyUQb8iU2EioEY__GRFNqggtnTGHcfmKNvpw4NF_PAZLONkC04EICW7Sbw__v-gfKmZY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79673710</pqid></control><display><type>article</type><title>Quantitative studies of human urinary excretion of uropontin</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Min, Wei ; Shiraga, Hiroshi ; Chalko, Charles ; Goldfarb, Stanley ; Krishna, G. Gopal ; Hoyer, John R.</creator><creatorcontrib>Min, Wei ; Shiraga, Hiroshi ; Chalko, Charles ; Goldfarb, Stanley ; Krishna, G. Gopal ; Hoyer, John R.</creatorcontrib><description>Quantitative studies of human urinary excretion of uropontin. Uropontin is the urinary form of osteopontin, an aspartic acid-rich phosphorylated glycoprotein. Uropontin has been previously shown to be a potent inhibitor of the nucleation, growth and aggregation of calcium oxalate crystals and the binding of these crystals to renal epithelial cells. Quantitative data defining the excretion of this protein are necessary to determine its role in urinary stone formation. In the present studies, we determined uropontin excretion rates of normal humans. Urine samples were obtained under conditions of known dietary intake from young adult human volunteers with no history, radiographic or laboratory evidence of renal disease. Urinary concentrations of uropontin were measured by a sensitive ELISA employing an affinity purified polyclonal antiserum to uropontin. Thirteen normal subjects ingested a constant diet providing 1 gram of calcium, 1 gram of phosphorus, 150mEq of sodium and 1 gram of protein per kilogram of body wt per day during an eight day study period. The relationship of urinary volume to uropontin excretion was assessed by varying fluid intake on the last four days of the study to change the mean urine volume/24hr by &gt; 500ml. Urine collected in six hour aliquots for eight days was analyzed for uropontin by ELISA, and for calcium, and creatinine. Daily uropontin excretion of 13 individual subjects was 3805 ± 1805 μg/24hr (mean ± 1 SD). The mean urinary levels (1.9 μg/ml) detected in the present study are sufficient for inhibition of crystallization; our previous studies have demonstrated that the nucleation, growth and aggregation of calcium oxalate crystals and their binding to renal cells in vitro are inhibited by this concentration of purified uropontin. In contrast to the regular pattern of diurnal variation of calcium excretion seen in most subjects, uropontin excretion showed no regularity of diurnal variation and was not directly related to either calcium or creatinine excretion or changes in urinary volume. However, uropontin concentration varied inversely with urine volume (P ≤ 0.001), so that the highest uropontin concentrations occurred when urine volume was the lowest. We conclude that the physiologic characteristic of an inverse relationship of uropontin concentration to urine volume favors protection from urinary crystallization of calcium oxalate by uropontin. Our quantitative definition of urinary uropontin excretion of normal adults provides the basis for the evaluation of uropontin excretion by individuals who have formed urinary stones.</description><identifier>ISSN: 0085-2538</identifier><identifier>EISSN: 1523-1755</identifier><identifier>DOI: 10.1046/j.1523-1755.1998.00745.x</identifier><identifier>PMID: 9453017</identifier><identifier>CODEN: KDYIA5</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Adult ; Biological and medical sciences ; Calcium - urine ; calcium oxalate crystals ; Circadian Rhythm ; Enzyme-Linked Immunosorbent Assay ; Fundamental and applied biological sciences. Psychology ; glycoprotein ; Humans ; Osteopontin ; Proteins - metabolism ; stone formation ; Urinary Calculi - prevention &amp; control ; uropontin ; Vertebrates: urinary system</subject><ispartof>Kidney international, 1998-01, Vol.53 (1), p.189-193</ispartof><rights>1998 International Society of Nephrology</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-9a3a71b8f4a5112dda74ff1de23b9f87d91e16c66e5679e294afc53d724e7c083</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2136644$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9453017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Wei</creatorcontrib><creatorcontrib>Shiraga, Hiroshi</creatorcontrib><creatorcontrib>Chalko, Charles</creatorcontrib><creatorcontrib>Goldfarb, Stanley</creatorcontrib><creatorcontrib>Krishna, G. Gopal</creatorcontrib><creatorcontrib>Hoyer, John R.</creatorcontrib><title>Quantitative studies of human urinary excretion of uropontin</title><title>Kidney international</title><addtitle>Kidney Int</addtitle><description>Quantitative studies of human urinary excretion of uropontin. Uropontin is the urinary form of osteopontin, an aspartic acid-rich phosphorylated glycoprotein. Uropontin has been previously shown to be a potent inhibitor of the nucleation, growth and aggregation of calcium oxalate crystals and the binding of these crystals to renal epithelial cells. Quantitative data defining the excretion of this protein are necessary to determine its role in urinary stone formation. In the present studies, we determined uropontin excretion rates of normal humans. Urine samples were obtained under conditions of known dietary intake from young adult human volunteers with no history, radiographic or laboratory evidence of renal disease. Urinary concentrations of uropontin were measured by a sensitive ELISA employing an affinity purified polyclonal antiserum to uropontin. Thirteen normal subjects ingested a constant diet providing 1 gram of calcium, 1 gram of phosphorus, 150mEq of sodium and 1 gram of protein per kilogram of body wt per day during an eight day study period. The relationship of urinary volume to uropontin excretion was assessed by varying fluid intake on the last four days of the study to change the mean urine volume/24hr by &gt; 500ml. Urine collected in six hour aliquots for eight days was analyzed for uropontin by ELISA, and for calcium, and creatinine. Daily uropontin excretion of 13 individual subjects was 3805 ± 1805 μg/24hr (mean ± 1 SD). The mean urinary levels (1.9 μg/ml) detected in the present study are sufficient for inhibition of crystallization; our previous studies have demonstrated that the nucleation, growth and aggregation of calcium oxalate crystals and their binding to renal cells in vitro are inhibited by this concentration of purified uropontin. In contrast to the regular pattern of diurnal variation of calcium excretion seen in most subjects, uropontin excretion showed no regularity of diurnal variation and was not directly related to either calcium or creatinine excretion or changes in urinary volume. However, uropontin concentration varied inversely with urine volume (P ≤ 0.001), so that the highest uropontin concentrations occurred when urine volume was the lowest. We conclude that the physiologic characteristic of an inverse relationship of uropontin concentration to urine volume favors protection from urinary crystallization of calcium oxalate by uropontin. Our quantitative definition of urinary uropontin excretion of normal adults provides the basis for the evaluation of uropontin excretion by individuals who have formed urinary stones.</description><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Calcium - urine</subject><subject>calcium oxalate crystals</subject><subject>Circadian Rhythm</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glycoprotein</subject><subject>Humans</subject><subject>Osteopontin</subject><subject>Proteins - metabolism</subject><subject>stone formation</subject><subject>Urinary Calculi - prevention &amp; control</subject><subject>uropontin</subject><subject>Vertebrates: urinary system</subject><issn>0085-2538</issn><issn>1523-1755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV2LEzEUhsOirLX6E4S5EO9mTCZfE_BGl113YUEEvQ5pcsKmtJmaj6X-ezO21EuvQnje9yR5glBH8EAwEx-3A-Ej7YnkfCBKTQPGkvHheIVWF_ACrTCeeD9yOr1Cr3Pe4rZXFF-ja8U4xUSu0Kfv1cQSiinhGbpcqguQu9l3T3VvYldTiCb97uBoE5QwxwXVNB_mVopv0Etvdhnentc1-nl3--Pmvn_89vXh5vNjbzkVpVeGGkk2k2eGEzI6ZyTznjgY6Ub5STpFgAgrBHAhFYyKGd-aTo4MpMUTXaMPp7mHNP-qkIveh2xhtzMR5pq1VEJSSXALTqegTXPOCbw-pLBvD9AE60Wc3urFj1786EWc_itOH1v13fmMutmDuxTPphp_f-YmW7PzyUQb8iU2EioEY__GRFNqggtnTGHcfmKNvpw4NF_PAZLONkC04EICW7Sbw__v-gfKmZY4</recordid><startdate>199801</startdate><enddate>199801</enddate><creator>Min, Wei</creator><creator>Shiraga, Hiroshi</creator><creator>Chalko, Charles</creator><creator>Goldfarb, Stanley</creator><creator>Krishna, G. Gopal</creator><creator>Hoyer, John R.</creator><general>Elsevier Inc</general><general>Nature Publishing</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199801</creationdate><title>Quantitative studies of human urinary excretion of uropontin</title><author>Min, Wei ; Shiraga, Hiroshi ; Chalko, Charles ; Goldfarb, Stanley ; Krishna, G. Gopal ; Hoyer, John R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-9a3a71b8f4a5112dda74ff1de23b9f87d91e16c66e5679e294afc53d724e7c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Calcium - urine</topic><topic>calcium oxalate crystals</topic><topic>Circadian Rhythm</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glycoprotein</topic><topic>Humans</topic><topic>Osteopontin</topic><topic>Proteins - metabolism</topic><topic>stone formation</topic><topic>Urinary Calculi - prevention &amp; control</topic><topic>uropontin</topic><topic>Vertebrates: urinary system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Wei</creatorcontrib><creatorcontrib>Shiraga, Hiroshi</creatorcontrib><creatorcontrib>Chalko, Charles</creatorcontrib><creatorcontrib>Goldfarb, Stanley</creatorcontrib><creatorcontrib>Krishna, G. Gopal</creatorcontrib><creatorcontrib>Hoyer, John R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Kidney international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Wei</au><au>Shiraga, Hiroshi</au><au>Chalko, Charles</au><au>Goldfarb, Stanley</au><au>Krishna, G. Gopal</au><au>Hoyer, John R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative studies of human urinary excretion of uropontin</atitle><jtitle>Kidney international</jtitle><addtitle>Kidney Int</addtitle><date>1998-01</date><risdate>1998</risdate><volume>53</volume><issue>1</issue><spage>189</spage><epage>193</epage><pages>189-193</pages><issn>0085-2538</issn><eissn>1523-1755</eissn><coden>KDYIA5</coden><abstract>Quantitative studies of human urinary excretion of uropontin. Uropontin is the urinary form of osteopontin, an aspartic acid-rich phosphorylated glycoprotein. Uropontin has been previously shown to be a potent inhibitor of the nucleation, growth and aggregation of calcium oxalate crystals and the binding of these crystals to renal epithelial cells. Quantitative data defining the excretion of this protein are necessary to determine its role in urinary stone formation. In the present studies, we determined uropontin excretion rates of normal humans. Urine samples were obtained under conditions of known dietary intake from young adult human volunteers with no history, radiographic or laboratory evidence of renal disease. Urinary concentrations of uropontin were measured by a sensitive ELISA employing an affinity purified polyclonal antiserum to uropontin. Thirteen normal subjects ingested a constant diet providing 1 gram of calcium, 1 gram of phosphorus, 150mEq of sodium and 1 gram of protein per kilogram of body wt per day during an eight day study period. The relationship of urinary volume to uropontin excretion was assessed by varying fluid intake on the last four days of the study to change the mean urine volume/24hr by &gt; 500ml. Urine collected in six hour aliquots for eight days was analyzed for uropontin by ELISA, and for calcium, and creatinine. Daily uropontin excretion of 13 individual subjects was 3805 ± 1805 μg/24hr (mean ± 1 SD). The mean urinary levels (1.9 μg/ml) detected in the present study are sufficient for inhibition of crystallization; our previous studies have demonstrated that the nucleation, growth and aggregation of calcium oxalate crystals and their binding to renal cells in vitro are inhibited by this concentration of purified uropontin. In contrast to the regular pattern of diurnal variation of calcium excretion seen in most subjects, uropontin excretion showed no regularity of diurnal variation and was not directly related to either calcium or creatinine excretion or changes in urinary volume. However, uropontin concentration varied inversely with urine volume (P ≤ 0.001), so that the highest uropontin concentrations occurred when urine volume was the lowest. We conclude that the physiologic characteristic of an inverse relationship of uropontin concentration to urine volume favors protection from urinary crystallization of calcium oxalate by uropontin. Our quantitative definition of urinary uropontin excretion of normal adults provides the basis for the evaluation of uropontin excretion by individuals who have formed urinary stones.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>9453017</pmid><doi>10.1046/j.1523-1755.1998.00745.x</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0085-2538
ispartof Kidney international, 1998-01, Vol.53 (1), p.189-193
issn 0085-2538
1523-1755
language eng
recordid cdi_proquest_miscellaneous_79673710
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Adult
Biological and medical sciences
Calcium - urine
calcium oxalate crystals
Circadian Rhythm
Enzyme-Linked Immunosorbent Assay
Fundamental and applied biological sciences. Psychology
glycoprotein
Humans
Osteopontin
Proteins - metabolism
stone formation
Urinary Calculi - prevention & control
uropontin
Vertebrates: urinary system
title Quantitative studies of human urinary excretion of uropontin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20studies%20of%20human%20urinary%20excretion%20of%20uropontin&rft.jtitle=Kidney%20international&rft.au=Min,%20Wei&rft.date=1998-01&rft.volume=53&rft.issue=1&rft.spage=189&rft.epage=193&rft.pages=189-193&rft.issn=0085-2538&rft.eissn=1523-1755&rft.coden=KDYIA5&rft_id=info:doi/10.1046/j.1523-1755.1998.00745.x&rft_dat=%3Cproquest_cross%3E79673710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79673710&rft_id=info:pmid/9453017&rft_els_id=S0085253815603805&rfr_iscdi=true