Role of Oligosaccharides in the Pharmacokinetics of Tissue-Derived and Genetically Engineered Cholinesterases

To understand the role of glycosylation in the circulation of cholinesterases, we compared the mean residence time of five tissue-derived and two recombinant cholinesterases (injected intravenously in mice) with their oligosaccharide profiles. Monosaccharide composition analysis revealed differences...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmacology 1998-01, Vol.53 (1), p.112-122
Hauptverfasser: Saxena, Ashima, Ashani, Yacov, Raveh, Lily, Stevenson, David, Patel, Thakor, Doctor, B.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue 1
container_start_page 112
container_title Molecular pharmacology
container_volume 53
creator Saxena, Ashima
Ashani, Yacov
Raveh, Lily
Stevenson, David
Patel, Thakor
Doctor, B.P.
description To understand the role of glycosylation in the circulation of cholinesterases, we compared the mean residence time of five tissue-derived and two recombinant cholinesterases (injected intravenously in mice) with their oligosaccharide profiles. Monosaccharide composition analysis revealed differences in the total carbohydrate, galactose, and sialic acid contents. The molar ratio of sialic acid to galactose residues on tetrameric human serum butyrylcholinesterase, recombinant human butyrylcholinesterase, and recombinant mouse acetylcholinesterase was found to be ∼1.0. ForTorpedo californica acetylcholinesterase, monomeric and tetrameric fetal bovine serum acetylcholinesterase, and equine serum butyrylcholinesterase, this ratio was ∼0.5. However, the circulatory stability of cholinesterases could not be correlated with the sialic acid-to-galactose ratio. Fractionation of the total pool of oligosaccharides obtained after neuraminidase digestion revealed one major oligosaccharide for human serum butyrylcholinesterase and three or four major oligosaccharides in other cholinesterases. The glycans of tetrameric forms of plasma cholinesterases (human serum butyrylcholinesterase, fetal bovine serum acetylcholinesterase, and equine serum butyrylcholinesterase) clearly demonstrated a reduced heterogeneity and higher maturity compared with glycans of monomeric fetal bovine serum acetylcholinesterase, dimeric tissue-derivedT. californica acetylcholinesterase, and recombinant cholinesterases. T. californica acetylcholinesterase, recombinant cholinesterases, and monomeric fetal bovine serum acetylcholinesterase showed a distinctive shorter mean residence time (44–304 min) compared with tetrameric forms of plasma cholinesterases (1902–3206 min). Differences in the pharmacokinetic parameters of cholinesterases seem to be due to the combined effect of the molecular weight and charge- and size-based heterogeneity in glycans.
doi_str_mv 10.1124/mol.53.1.112
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_79671959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026895X24131598</els_id><sourcerecordid>79671959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-54bec0e06892ed1a54aea0f9e4f52438aa5223fe1304cd21542f5757d93ea3343</originalsourceid><addsrcrecordid>eNptkM1PGzEQxa2qKITQG1ekvbSnbvDnZn2sQkorIYEQSNwsx57NGrzr1N5Q5b_HIRHiwGn89H7zxnoInRE8JYTyiy74qWBTslNf0JgISkpMCPmKxhjTqqyleDxGJyk9YUy4qPEIjSTnTLJ6jLq74KEITXHj3SokbUyro7OQCtcXQwvFbdadNuHZ9TA4k3bsvUtpA-UlRPcCttC9La7gzdbeb4tFv8owxGzN2-DzOw0QdYJ0io4a7RN8O8wJevi9uJ__Ka9vrv7Of12XhlVsKAVfgsGAq1pSsEQLrkHjRgJvBOWs1lpQyhogDHNjKRGcNmImZlYy0IxxNkE_9rnrGP5t8nnVuWTAe91D2CQ1k9WMSCEz-HMPmhhSitCodXSdjltFsNq1q3K7SjBFdirj54fczbID-w4f6sz-973fulX730VQ60N9Pqy2H3OqPQe5hBcHUSXjoDdg844ZlA3u8w-8Aheelq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79671959</pqid></control><display><type>article</type><title>Role of Oligosaccharides in the Pharmacokinetics of Tissue-Derived and Genetically Engineered Cholinesterases</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Saxena, Ashima ; Ashani, Yacov ; Raveh, Lily ; Stevenson, David ; Patel, Thakor ; Doctor, B.P.</creator><creatorcontrib>Saxena, Ashima ; Ashani, Yacov ; Raveh, Lily ; Stevenson, David ; Patel, Thakor ; Doctor, B.P.</creatorcontrib><description>To understand the role of glycosylation in the circulation of cholinesterases, we compared the mean residence time of five tissue-derived and two recombinant cholinesterases (injected intravenously in mice) with their oligosaccharide profiles. Monosaccharide composition analysis revealed differences in the total carbohydrate, galactose, and sialic acid contents. The molar ratio of sialic acid to galactose residues on tetrameric human serum butyrylcholinesterase, recombinant human butyrylcholinesterase, and recombinant mouse acetylcholinesterase was found to be ∼1.0. ForTorpedo californica acetylcholinesterase, monomeric and tetrameric fetal bovine serum acetylcholinesterase, and equine serum butyrylcholinesterase, this ratio was ∼0.5. However, the circulatory stability of cholinesterases could not be correlated with the sialic acid-to-galactose ratio. Fractionation of the total pool of oligosaccharides obtained after neuraminidase digestion revealed one major oligosaccharide for human serum butyrylcholinesterase and three or four major oligosaccharides in other cholinesterases. The glycans of tetrameric forms of plasma cholinesterases (human serum butyrylcholinesterase, fetal bovine serum acetylcholinesterase, and equine serum butyrylcholinesterase) clearly demonstrated a reduced heterogeneity and higher maturity compared with glycans of monomeric fetal bovine serum acetylcholinesterase, dimeric tissue-derivedT. californica acetylcholinesterase, and recombinant cholinesterases. T. californica acetylcholinesterase, recombinant cholinesterases, and monomeric fetal bovine serum acetylcholinesterase showed a distinctive shorter mean residence time (44–304 min) compared with tetrameric forms of plasma cholinesterases (1902–3206 min). Differences in the pharmacokinetic parameters of cholinesterases seem to be due to the combined effect of the molecular weight and charge- and size-based heterogeneity in glycans.</description><identifier>ISSN: 0026-895X</identifier><identifier>EISSN: 1521-0111</identifier><identifier>DOI: 10.1124/mol.53.1.112</identifier><identifier>PMID: 9443938</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetylcholinesterase - blood ; Acetylcholinesterase - pharmacokinetics ; Animals ; Butyrylcholinesterase - blood ; Butyrylcholinesterase - pharmacokinetics ; Cattle ; Centrifugation, Density Gradient ; CHO Cells ; Cholinesterases - analysis ; Cholinesterases - blood ; Cholinesterases - pharmacokinetics ; Cricetinae ; Enzyme Stability ; Glycosylation ; Horses ; Humans ; Injections, Intravenous ; Mice ; Oligosaccharides - analysis ; Oligosaccharides - metabolism ; Recombinant Proteins - pharmacokinetics ; Torpedo</subject><ispartof>Molecular pharmacology, 1998-01, Vol.53 (1), p.112-122</ispartof><rights>1998 American Society for Pharmacology and Experimental Therapeutics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-54bec0e06892ed1a54aea0f9e4f52438aa5223fe1304cd21542f5757d93ea3343</citedby><cites>FETCH-LOGICAL-c363t-54bec0e06892ed1a54aea0f9e4f52438aa5223fe1304cd21542f5757d93ea3343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9443938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saxena, Ashima</creatorcontrib><creatorcontrib>Ashani, Yacov</creatorcontrib><creatorcontrib>Raveh, Lily</creatorcontrib><creatorcontrib>Stevenson, David</creatorcontrib><creatorcontrib>Patel, Thakor</creatorcontrib><creatorcontrib>Doctor, B.P.</creatorcontrib><title>Role of Oligosaccharides in the Pharmacokinetics of Tissue-Derived and Genetically Engineered Cholinesterases</title><title>Molecular pharmacology</title><addtitle>Mol Pharmacol</addtitle><description>To understand the role of glycosylation in the circulation of cholinesterases, we compared the mean residence time of five tissue-derived and two recombinant cholinesterases (injected intravenously in mice) with their oligosaccharide profiles. Monosaccharide composition analysis revealed differences in the total carbohydrate, galactose, and sialic acid contents. The molar ratio of sialic acid to galactose residues on tetrameric human serum butyrylcholinesterase, recombinant human butyrylcholinesterase, and recombinant mouse acetylcholinesterase was found to be ∼1.0. ForTorpedo californica acetylcholinesterase, monomeric and tetrameric fetal bovine serum acetylcholinesterase, and equine serum butyrylcholinesterase, this ratio was ∼0.5. However, the circulatory stability of cholinesterases could not be correlated with the sialic acid-to-galactose ratio. Fractionation of the total pool of oligosaccharides obtained after neuraminidase digestion revealed one major oligosaccharide for human serum butyrylcholinesterase and three or four major oligosaccharides in other cholinesterases. The glycans of tetrameric forms of plasma cholinesterases (human serum butyrylcholinesterase, fetal bovine serum acetylcholinesterase, and equine serum butyrylcholinesterase) clearly demonstrated a reduced heterogeneity and higher maturity compared with glycans of monomeric fetal bovine serum acetylcholinesterase, dimeric tissue-derivedT. californica acetylcholinesterase, and recombinant cholinesterases. T. californica acetylcholinesterase, recombinant cholinesterases, and monomeric fetal bovine serum acetylcholinesterase showed a distinctive shorter mean residence time (44–304 min) compared with tetrameric forms of plasma cholinesterases (1902–3206 min). Differences in the pharmacokinetic parameters of cholinesterases seem to be due to the combined effect of the molecular weight and charge- and size-based heterogeneity in glycans.</description><subject>Acetylcholinesterase - blood</subject><subject>Acetylcholinesterase - pharmacokinetics</subject><subject>Animals</subject><subject>Butyrylcholinesterase - blood</subject><subject>Butyrylcholinesterase - pharmacokinetics</subject><subject>Cattle</subject><subject>Centrifugation, Density Gradient</subject><subject>CHO Cells</subject><subject>Cholinesterases - analysis</subject><subject>Cholinesterases - blood</subject><subject>Cholinesterases - pharmacokinetics</subject><subject>Cricetinae</subject><subject>Enzyme Stability</subject><subject>Glycosylation</subject><subject>Horses</subject><subject>Humans</subject><subject>Injections, Intravenous</subject><subject>Mice</subject><subject>Oligosaccharides - analysis</subject><subject>Oligosaccharides - metabolism</subject><subject>Recombinant Proteins - pharmacokinetics</subject><subject>Torpedo</subject><issn>0026-895X</issn><issn>1521-0111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM1PGzEQxa2qKITQG1ekvbSnbvDnZn2sQkorIYEQSNwsx57NGrzr1N5Q5b_HIRHiwGn89H7zxnoInRE8JYTyiy74qWBTslNf0JgISkpMCPmKxhjTqqyleDxGJyk9YUy4qPEIjSTnTLJ6jLq74KEITXHj3SokbUyro7OQCtcXQwvFbdadNuHZ9TA4k3bsvUtpA-UlRPcCttC9La7gzdbeb4tFv8owxGzN2-DzOw0QdYJ0io4a7RN8O8wJevi9uJ__Ka9vrv7Of12XhlVsKAVfgsGAq1pSsEQLrkHjRgJvBOWs1lpQyhogDHNjKRGcNmImZlYy0IxxNkE_9rnrGP5t8nnVuWTAe91D2CQ1k9WMSCEz-HMPmhhSitCodXSdjltFsNq1q3K7SjBFdirj54fczbID-w4f6sz-973fulX730VQ60N9Pqy2H3OqPQe5hBcHUSXjoDdg844ZlA3u8w-8Aheelq8</recordid><startdate>199801</startdate><enddate>199801</enddate><creator>Saxena, Ashima</creator><creator>Ashani, Yacov</creator><creator>Raveh, Lily</creator><creator>Stevenson, David</creator><creator>Patel, Thakor</creator><creator>Doctor, B.P.</creator><general>Elsevier Inc</general><general>American Society for Pharmacology and Experimental Therapeutics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199801</creationdate><title>Role of Oligosaccharides in the Pharmacokinetics of Tissue-Derived and Genetically Engineered Cholinesterases</title><author>Saxena, Ashima ; Ashani, Yacov ; Raveh, Lily ; Stevenson, David ; Patel, Thakor ; Doctor, B.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-54bec0e06892ed1a54aea0f9e4f52438aa5223fe1304cd21542f5757d93ea3343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Acetylcholinesterase - blood</topic><topic>Acetylcholinesterase - pharmacokinetics</topic><topic>Animals</topic><topic>Butyrylcholinesterase - blood</topic><topic>Butyrylcholinesterase - pharmacokinetics</topic><topic>Cattle</topic><topic>Centrifugation, Density Gradient</topic><topic>CHO Cells</topic><topic>Cholinesterases - analysis</topic><topic>Cholinesterases - blood</topic><topic>Cholinesterases - pharmacokinetics</topic><topic>Cricetinae</topic><topic>Enzyme Stability</topic><topic>Glycosylation</topic><topic>Horses</topic><topic>Humans</topic><topic>Injections, Intravenous</topic><topic>Mice</topic><topic>Oligosaccharides - analysis</topic><topic>Oligosaccharides - metabolism</topic><topic>Recombinant Proteins - pharmacokinetics</topic><topic>Torpedo</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saxena, Ashima</creatorcontrib><creatorcontrib>Ashani, Yacov</creatorcontrib><creatorcontrib>Raveh, Lily</creatorcontrib><creatorcontrib>Stevenson, David</creatorcontrib><creatorcontrib>Patel, Thakor</creatorcontrib><creatorcontrib>Doctor, B.P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saxena, Ashima</au><au>Ashani, Yacov</au><au>Raveh, Lily</au><au>Stevenson, David</au><au>Patel, Thakor</au><au>Doctor, B.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Oligosaccharides in the Pharmacokinetics of Tissue-Derived and Genetically Engineered Cholinesterases</atitle><jtitle>Molecular pharmacology</jtitle><addtitle>Mol Pharmacol</addtitle><date>1998-01</date><risdate>1998</risdate><volume>53</volume><issue>1</issue><spage>112</spage><epage>122</epage><pages>112-122</pages><issn>0026-895X</issn><eissn>1521-0111</eissn><abstract>To understand the role of glycosylation in the circulation of cholinesterases, we compared the mean residence time of five tissue-derived and two recombinant cholinesterases (injected intravenously in mice) with their oligosaccharide profiles. Monosaccharide composition analysis revealed differences in the total carbohydrate, galactose, and sialic acid contents. The molar ratio of sialic acid to galactose residues on tetrameric human serum butyrylcholinesterase, recombinant human butyrylcholinesterase, and recombinant mouse acetylcholinesterase was found to be ∼1.0. ForTorpedo californica acetylcholinesterase, monomeric and tetrameric fetal bovine serum acetylcholinesterase, and equine serum butyrylcholinesterase, this ratio was ∼0.5. However, the circulatory stability of cholinesterases could not be correlated with the sialic acid-to-galactose ratio. Fractionation of the total pool of oligosaccharides obtained after neuraminidase digestion revealed one major oligosaccharide for human serum butyrylcholinesterase and three or four major oligosaccharides in other cholinesterases. The glycans of tetrameric forms of plasma cholinesterases (human serum butyrylcholinesterase, fetal bovine serum acetylcholinesterase, and equine serum butyrylcholinesterase) clearly demonstrated a reduced heterogeneity and higher maturity compared with glycans of monomeric fetal bovine serum acetylcholinesterase, dimeric tissue-derivedT. californica acetylcholinesterase, and recombinant cholinesterases. T. californica acetylcholinesterase, recombinant cholinesterases, and monomeric fetal bovine serum acetylcholinesterase showed a distinctive shorter mean residence time (44–304 min) compared with tetrameric forms of plasma cholinesterases (1902–3206 min). Differences in the pharmacokinetic parameters of cholinesterases seem to be due to the combined effect of the molecular weight and charge- and size-based heterogeneity in glycans.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9443938</pmid><doi>10.1124/mol.53.1.112</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-895X
ispartof Molecular pharmacology, 1998-01, Vol.53 (1), p.112-122
issn 0026-895X
1521-0111
language eng
recordid cdi_proquest_miscellaneous_79671959
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Acetylcholinesterase - blood
Acetylcholinesterase - pharmacokinetics
Animals
Butyrylcholinesterase - blood
Butyrylcholinesterase - pharmacokinetics
Cattle
Centrifugation, Density Gradient
CHO Cells
Cholinesterases - analysis
Cholinesterases - blood
Cholinesterases - pharmacokinetics
Cricetinae
Enzyme Stability
Glycosylation
Horses
Humans
Injections, Intravenous
Mice
Oligosaccharides - analysis
Oligosaccharides - metabolism
Recombinant Proteins - pharmacokinetics
Torpedo
title Role of Oligosaccharides in the Pharmacokinetics of Tissue-Derived and Genetically Engineered Cholinesterases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Oligosaccharides%20in%20the%20Pharmacokinetics%20of%20Tissue-Derived%20and%20Genetically%20Engineered%20Cholinesterases&rft.jtitle=Molecular%20pharmacology&rft.au=Saxena,%20Ashima&rft.date=1998-01&rft.volume=53&rft.issue=1&rft.spage=112&rft.epage=122&rft.pages=112-122&rft.issn=0026-895X&rft.eissn=1521-0111&rft_id=info:doi/10.1124/mol.53.1.112&rft_dat=%3Cproquest_cross%3E79671959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79671959&rft_id=info:pmid/9443938&rft_els_id=S0026895X24131598&rfr_iscdi=true