Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay

The oligosaccharide profiles in glycoproteins are determined by a series of processing reactions catalyzed by Golgi glycosyltransferases and glycosidases. Recently in vivo galactose incorporation in Saccharomyces cerevisiae has been demonstrated through the expression of human beta-1,4-galactosyltra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-01, Vol.273 (5), p.2583-2590
Hauptverfasser: Roy, S.K, Yoko-o, T, Ikenaga, H, Jigami, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2590
container_issue 5
container_start_page 2583
container_title The Journal of biological chemistry
container_volume 273
creator Roy, S.K
Yoko-o, T
Ikenaga, H
Jigami, Y
description The oligosaccharide profiles in glycoproteins are determined by a series of processing reactions catalyzed by Golgi glycosyltransferases and glycosidases. Recently in vivo galactose incorporation in Saccharomyces cerevisiae has been demonstrated through the expression of human beta-1,4-galactosyltransferase in an alg1 mutant, suggesting the presence of a UDP-galactose transporter in S. cerevisiae (Schwientek, T., Narimatsu, H., and Ernst, J. F. (1996) J. Biol. Chem. 271, 3398-3405). However, this is quite unexpected, because S. cerevisiae does not have galactose residues in its glycoproteins. To address this question we have constructed S. cerevisiae mnn1 mutant strains expressing Schizosaccharomyces pombe alpha-1,2-galactosyltransferase. The mnn1 mutant of S. cerevisiae provides endogenous acceptors for galactose transfer by the expressed alpha-1,2-galactosyltransferase. We present here three lines of evidences for the existence of UDP-galactose transporter in S. cerevisiae. (i) About 15-20% of the total transformed mnn1 cells grown in a galactose medium were stained with fluorescein isothiocyanate-conjugated alpha-galactose-specific lectin, indicating the presence of alpha-galactose residues on the cell surface. (ii) Galactomannan proteins can be precipitated with agarose-immobilized alpha-galactose-specific lectin from a whole cell lysate prepared from transformed mnn1 cells grown in a galactose medium. (iii) The presence of UDP-galactose transporter was demonstrated by direct transport assay. This transport in S. cerevisiae is dependent on time, temperature, and protein concentration and is inhibited by nucleotide monophosphate and Triton X-100. The overall UDP-galactose transport in S. cerevisiae is comparable with that in S. pombe, indicating a more or less similar reaction velocity, while the rate of GDP-mannose transport is higher in S. pombe than in S. cerevisiae.
doi_str_mv 10.1074/jbc.273.5.2583
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_79669650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79669650</sourcerecordid><originalsourceid>FETCH-LOGICAL-f259t-bf30e22ea7604e43467202cc786af707ff70cd263651ef94f56c2b0799a85f2e3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWj-u3oScvG3Nd5qjqFVBUNCCt2WaTtqV7aYmu4X-CX-zW6x4dA4zh_eZd4aXkHPOhpxZdfUx9UNh5VAPhR7JPTLgbCQLqfn7PhkwJnjheuGIHOf8wfpSjh-SQ6eU0YYNyNe4a3xbxQZqiutqho1HGmKik9uXYg41-DZmpG2CJq9iajHRqqGv4P0CUlxuPGbqMfWruYKeW6TYzRf9xC23rtaR_rpsatgeotDMfrQ2xT9jCjnD5pQcBKgznu3mCZmM795uHoqn5_vHm-unIgjt2mIaJEMhEKxhCpVUxgomvLcjA8EyG_rmZ8JIozkGp4I2XkyZdQ5GOgiUJ-Tyx3eV4meHuS2XVfZY19Bg7HJpnTHOaPYvyI2U21B78GIHdtMlzspVqpaQNuUu6T89QCxhnqpcTl65c5aZ_i0lvwEWR4wM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16330049</pqid></control><display><type>article</type><title>Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Roy, S.K ; Yoko-o, T ; Ikenaga, H ; Jigami, Y</creator><creatorcontrib>Roy, S.K ; Yoko-o, T ; Ikenaga, H ; Jigami, Y</creatorcontrib><description>The oligosaccharide profiles in glycoproteins are determined by a series of processing reactions catalyzed by Golgi glycosyltransferases and glycosidases. Recently in vivo galactose incorporation in Saccharomyces cerevisiae has been demonstrated through the expression of human beta-1,4-galactosyltransferase in an alg1 mutant, suggesting the presence of a UDP-galactose transporter in S. cerevisiae (Schwientek, T., Narimatsu, H., and Ernst, J. F. (1996) J. Biol. Chem. 271, 3398-3405). However, this is quite unexpected, because S. cerevisiae does not have galactose residues in its glycoproteins. To address this question we have constructed S. cerevisiae mnn1 mutant strains expressing Schizosaccharomyces pombe alpha-1,2-galactosyltransferase. The mnn1 mutant of S. cerevisiae provides endogenous acceptors for galactose transfer by the expressed alpha-1,2-galactosyltransferase. We present here three lines of evidences for the existence of UDP-galactose transporter in S. cerevisiae. (i) About 15-20% of the total transformed mnn1 cells grown in a galactose medium were stained with fluorescein isothiocyanate-conjugated alpha-galactose-specific lectin, indicating the presence of alpha-galactose residues on the cell surface. (ii) Galactomannan proteins can be precipitated with agarose-immobilized alpha-galactose-specific lectin from a whole cell lysate prepared from transformed mnn1 cells grown in a galactose medium. (iii) The presence of UDP-galactose transporter was demonstrated by direct transport assay. This transport in S. cerevisiae is dependent on time, temperature, and protein concentration and is inhibited by nucleotide monophosphate and Triton X-100. The overall UDP-galactose transport in S. cerevisiae is comparable with that in S. pombe, indicating a more or less similar reaction velocity, while the rate of GDP-mannose transport is higher in S. pombe than in S. cerevisiae.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.273.5.2583</identifier><identifier>PMID: 9446560</identifier><language>eng</language><publisher>United States</publisher><subject>ACTIVE TRANSPORT ; ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; BINDING PROTEINS ; BIOCHEMISTRY ; BIOCHIMIE ; Biological Transport ; BIOQUIMICA ; CELL MEMBRANES ; CYTOCHEMISTRY ; ENZYMIC ACTIVITY ; FOSFATOS (ESTERES) ; GALACTOMANNANS ; GALACTOSA ; GALACTOSE ; Galactose - metabolism ; GALACTOSYLTRANSFERASE ; Galactosyltransferases - genetics ; Galactosyltransferases - metabolism ; GDP-MANNOSE ; GLICOSILTRANSFERASAS ; GLYCOSYLTRANSFERASE ; GLYCOSYLTRANSFERASES ; Golgi Apparatus - enzymology ; Guanosine Diphosphate Mannose - metabolism ; MANANOS ; MANNANE ; MANNANS ; MANNOSE ; MANOSA ; MEMBRANAS CELULARES ; MEMBRANE CELLULAIRE ; Monosaccharide Transport Proteins - metabolism ; MUTANT ; MUTANTES ; MUTANTS ; Mutation ; NUCLEOTIDE ; NUCLEOTIDES ; NUCLEOTIDOS ; PHOSPHATE (ESTER) ; PHOSPHATES (ESTERS) ; PLASMA MEMBRANES ; PROTEINAS AGLUTINANTES ; PROTEINE DE LIAISON ; Saccharomyces - enzymology ; Saccharomyces - physiology ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - physiology ; SCHIZOSACCHAROMYCES POMBE ; Species Specificity ; Uridine Diphosphate Galactose - metabolism</subject><ispartof>The Journal of biological chemistry, 1998-01, Vol.273 (5), p.2583-2590</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9446560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, S.K</creatorcontrib><creatorcontrib>Yoko-o, T</creatorcontrib><creatorcontrib>Ikenaga, H</creatorcontrib><creatorcontrib>Jigami, Y</creatorcontrib><title>Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The oligosaccharide profiles in glycoproteins are determined by a series of processing reactions catalyzed by Golgi glycosyltransferases and glycosidases. Recently in vivo galactose incorporation in Saccharomyces cerevisiae has been demonstrated through the expression of human beta-1,4-galactosyltransferase in an alg1 mutant, suggesting the presence of a UDP-galactose transporter in S. cerevisiae (Schwientek, T., Narimatsu, H., and Ernst, J. F. (1996) J. Biol. Chem. 271, 3398-3405). However, this is quite unexpected, because S. cerevisiae does not have galactose residues in its glycoproteins. To address this question we have constructed S. cerevisiae mnn1 mutant strains expressing Schizosaccharomyces pombe alpha-1,2-galactosyltransferase. The mnn1 mutant of S. cerevisiae provides endogenous acceptors for galactose transfer by the expressed alpha-1,2-galactosyltransferase. We present here three lines of evidences for the existence of UDP-galactose transporter in S. cerevisiae. (i) About 15-20% of the total transformed mnn1 cells grown in a galactose medium were stained with fluorescein isothiocyanate-conjugated alpha-galactose-specific lectin, indicating the presence of alpha-galactose residues on the cell surface. (ii) Galactomannan proteins can be precipitated with agarose-immobilized alpha-galactose-specific lectin from a whole cell lysate prepared from transformed mnn1 cells grown in a galactose medium. (iii) The presence of UDP-galactose transporter was demonstrated by direct transport assay. This transport in S. cerevisiae is dependent on time, temperature, and protein concentration and is inhibited by nucleotide monophosphate and Triton X-100. The overall UDP-galactose transport in S. cerevisiae is comparable with that in S. pombe, indicating a more or less similar reaction velocity, while the rate of GDP-mannose transport is higher in S. pombe than in S. cerevisiae.</description><subject>ACTIVE TRANSPORT</subject><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>BINDING PROTEINS</subject><subject>BIOCHEMISTRY</subject><subject>BIOCHIMIE</subject><subject>Biological Transport</subject><subject>BIOQUIMICA</subject><subject>CELL MEMBRANES</subject><subject>CYTOCHEMISTRY</subject><subject>ENZYMIC ACTIVITY</subject><subject>FOSFATOS (ESTERES)</subject><subject>GALACTOMANNANS</subject><subject>GALACTOSA</subject><subject>GALACTOSE</subject><subject>Galactose - metabolism</subject><subject>GALACTOSYLTRANSFERASE</subject><subject>Galactosyltransferases - genetics</subject><subject>Galactosyltransferases - metabolism</subject><subject>GDP-MANNOSE</subject><subject>GLICOSILTRANSFERASAS</subject><subject>GLYCOSYLTRANSFERASE</subject><subject>GLYCOSYLTRANSFERASES</subject><subject>Golgi Apparatus - enzymology</subject><subject>Guanosine Diphosphate Mannose - metabolism</subject><subject>MANANOS</subject><subject>MANNANE</subject><subject>MANNANS</subject><subject>MANNOSE</subject><subject>MANOSA</subject><subject>MEMBRANAS CELULARES</subject><subject>MEMBRANE CELLULAIRE</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>NUCLEOTIDE</subject><subject>NUCLEOTIDES</subject><subject>NUCLEOTIDOS</subject><subject>PHOSPHATE (ESTER)</subject><subject>PHOSPHATES (ESTERS)</subject><subject>PLASMA MEMBRANES</subject><subject>PROTEINAS AGLUTINANTES</subject><subject>PROTEINE DE LIAISON</subject><subject>Saccharomyces - enzymology</subject><subject>Saccharomyces - physiology</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>SCHIZOSACCHAROMYCES POMBE</subject><subject>Species Specificity</subject><subject>Uridine Diphosphate Galactose - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMoWj-u3oScvG3Nd5qjqFVBUNCCt2WaTtqV7aYmu4X-CX-zW6x4dA4zh_eZd4aXkHPOhpxZdfUx9UNh5VAPhR7JPTLgbCQLqfn7PhkwJnjheuGIHOf8wfpSjh-SQ6eU0YYNyNe4a3xbxQZqiutqho1HGmKik9uXYg41-DZmpG2CJq9iajHRqqGv4P0CUlxuPGbqMfWruYKeW6TYzRf9xC23rtaR_rpsatgeotDMfrQ2xT9jCjnD5pQcBKgznu3mCZmM795uHoqn5_vHm-unIgjt2mIaJEMhEKxhCpVUxgomvLcjA8EyG_rmZ8JIozkGp4I2XkyZdQ5GOgiUJ-Tyx3eV4meHuS2XVfZY19Bg7HJpnTHOaPYvyI2U21B78GIHdtMlzspVqpaQNuUu6T89QCxhnqpcTl65c5aZ_i0lvwEWR4wM</recordid><startdate>19980130</startdate><enddate>19980130</enddate><creator>Roy, S.K</creator><creator>Yoko-o, T</creator><creator>Ikenaga, H</creator><creator>Jigami, Y</creator><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>19980130</creationdate><title>Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay</title><author>Roy, S.K ; Yoko-o, T ; Ikenaga, H ; Jigami, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f259t-bf30e22ea7604e43467202cc786af707ff70cd263651ef94f56c2b0799a85f2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>ACTIVE TRANSPORT</topic><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>BINDING PROTEINS</topic><topic>BIOCHEMISTRY</topic><topic>BIOCHIMIE</topic><topic>Biological Transport</topic><topic>BIOQUIMICA</topic><topic>CELL MEMBRANES</topic><topic>CYTOCHEMISTRY</topic><topic>ENZYMIC ACTIVITY</topic><topic>FOSFATOS (ESTERES)</topic><topic>GALACTOMANNANS</topic><topic>GALACTOSA</topic><topic>GALACTOSE</topic><topic>Galactose - metabolism</topic><topic>GALACTOSYLTRANSFERASE</topic><topic>Galactosyltransferases - genetics</topic><topic>Galactosyltransferases - metabolism</topic><topic>GDP-MANNOSE</topic><topic>GLICOSILTRANSFERASAS</topic><topic>GLYCOSYLTRANSFERASE</topic><topic>GLYCOSYLTRANSFERASES</topic><topic>Golgi Apparatus - enzymology</topic><topic>Guanosine Diphosphate Mannose - metabolism</topic><topic>MANANOS</topic><topic>MANNANE</topic><topic>MANNANS</topic><topic>MANNOSE</topic><topic>MANOSA</topic><topic>MEMBRANAS CELULARES</topic><topic>MEMBRANE CELLULAIRE</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>NUCLEOTIDE</topic><topic>NUCLEOTIDES</topic><topic>NUCLEOTIDOS</topic><topic>PHOSPHATE (ESTER)</topic><topic>PHOSPHATES (ESTERS)</topic><topic>PLASMA MEMBRANES</topic><topic>PROTEINAS AGLUTINANTES</topic><topic>PROTEINE DE LIAISON</topic><topic>Saccharomyces - enzymology</topic><topic>Saccharomyces - physiology</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>SCHIZOSACCHAROMYCES POMBE</topic><topic>Species Specificity</topic><topic>Uridine Diphosphate Galactose - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, S.K</creatorcontrib><creatorcontrib>Yoko-o, T</creatorcontrib><creatorcontrib>Ikenaga, H</creatorcontrib><creatorcontrib>Jigami, Y</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, S.K</au><au>Yoko-o, T</au><au>Ikenaga, H</au><au>Jigami, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1998-01-30</date><risdate>1998</risdate><volume>273</volume><issue>5</issue><spage>2583</spage><epage>2590</epage><pages>2583-2590</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The oligosaccharide profiles in glycoproteins are determined by a series of processing reactions catalyzed by Golgi glycosyltransferases and glycosidases. Recently in vivo galactose incorporation in Saccharomyces cerevisiae has been demonstrated through the expression of human beta-1,4-galactosyltransferase in an alg1 mutant, suggesting the presence of a UDP-galactose transporter in S. cerevisiae (Schwientek, T., Narimatsu, H., and Ernst, J. F. (1996) J. Biol. Chem. 271, 3398-3405). However, this is quite unexpected, because S. cerevisiae does not have galactose residues in its glycoproteins. To address this question we have constructed S. cerevisiae mnn1 mutant strains expressing Schizosaccharomyces pombe alpha-1,2-galactosyltransferase. The mnn1 mutant of S. cerevisiae provides endogenous acceptors for galactose transfer by the expressed alpha-1,2-galactosyltransferase. We present here three lines of evidences for the existence of UDP-galactose transporter in S. cerevisiae. (i) About 15-20% of the total transformed mnn1 cells grown in a galactose medium were stained with fluorescein isothiocyanate-conjugated alpha-galactose-specific lectin, indicating the presence of alpha-galactose residues on the cell surface. (ii) Galactomannan proteins can be precipitated with agarose-immobilized alpha-galactose-specific lectin from a whole cell lysate prepared from transformed mnn1 cells grown in a galactose medium. (iii) The presence of UDP-galactose transporter was demonstrated by direct transport assay. This transport in S. cerevisiae is dependent on time, temperature, and protein concentration and is inhibited by nucleotide monophosphate and Triton X-100. The overall UDP-galactose transport in S. cerevisiae is comparable with that in S. pombe, indicating a more or less similar reaction velocity, while the rate of GDP-mannose transport is higher in S. pombe than in S. cerevisiae.</abstract><cop>United States</cop><pmid>9446560</pmid><doi>10.1074/jbc.273.5.2583</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1998-01, Vol.273 (5), p.2583-2590
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_79669650
source MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects ACTIVE TRANSPORT
ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
BINDING PROTEINS
BIOCHEMISTRY
BIOCHIMIE
Biological Transport
BIOQUIMICA
CELL MEMBRANES
CYTOCHEMISTRY
ENZYMIC ACTIVITY
FOSFATOS (ESTERES)
GALACTOMANNANS
GALACTOSA
GALACTOSE
Galactose - metabolism
GALACTOSYLTRANSFERASE
Galactosyltransferases - genetics
Galactosyltransferases - metabolism
GDP-MANNOSE
GLICOSILTRANSFERASAS
GLYCOSYLTRANSFERASE
GLYCOSYLTRANSFERASES
Golgi Apparatus - enzymology
Guanosine Diphosphate Mannose - metabolism
MANANOS
MANNANE
MANNANS
MANNOSE
MANOSA
MEMBRANAS CELULARES
MEMBRANE CELLULAIRE
Monosaccharide Transport Proteins - metabolism
MUTANT
MUTANTES
MUTANTS
Mutation
NUCLEOTIDE
NUCLEOTIDES
NUCLEOTIDOS
PHOSPHATE (ESTER)
PHOSPHATES (ESTERS)
PLASMA MEMBRANES
PROTEINAS AGLUTINANTES
PROTEINE DE LIAISON
Saccharomyces - enzymology
Saccharomyces - physiology
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - physiology
SCHIZOSACCHAROMYCES POMBE
Species Specificity
Uridine Diphosphate Galactose - metabolism
title Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20evidence%20for%20UDP-galactose%20transporter%20in%20Saccharomyces%20cerevisiae%20through%20the%20in%20vivo%20galactosylation%20and%20in%20vitro%20transport%20assay&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Roy,%20S.K&rft.date=1998-01-30&rft.volume=273&rft.issue=5&rft.spage=2583&rft.epage=2590&rft.pages=2583-2590&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.273.5.2583&rft_dat=%3Cproquest_pubme%3E79669650%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16330049&rft_id=info:pmid/9446560&rfr_iscdi=true