Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay
The oligosaccharide profiles in glycoproteins are determined by a series of processing reactions catalyzed by Golgi glycosyltransferases and glycosidases. Recently in vivo galactose incorporation in Saccharomyces cerevisiae has been demonstrated through the expression of human beta-1,4-galactosyltra...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 1998-01, Vol.273 (5), p.2583-2590 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2590 |
---|---|
container_issue | 5 |
container_start_page | 2583 |
container_title | The Journal of biological chemistry |
container_volume | 273 |
creator | Roy, S.K Yoko-o, T Ikenaga, H Jigami, Y |
description | The oligosaccharide profiles in glycoproteins are determined by a series of processing reactions catalyzed by Golgi glycosyltransferases and glycosidases. Recently in vivo galactose incorporation in Saccharomyces cerevisiae has been demonstrated through the expression of human beta-1,4-galactosyltransferase in an alg1 mutant, suggesting the presence of a UDP-galactose transporter in S. cerevisiae (Schwientek, T., Narimatsu, H., and Ernst, J. F. (1996) J. Biol. Chem. 271, 3398-3405). However, this is quite unexpected, because S. cerevisiae does not have galactose residues in its glycoproteins. To address this question we have constructed S. cerevisiae mnn1 mutant strains expressing Schizosaccharomyces pombe alpha-1,2-galactosyltransferase. The mnn1 mutant of S. cerevisiae provides endogenous acceptors for galactose transfer by the expressed alpha-1,2-galactosyltransferase. We present here three lines of evidences for the existence of UDP-galactose transporter in S. cerevisiae. (i) About 15-20% of the total transformed mnn1 cells grown in a galactose medium were stained with fluorescein isothiocyanate-conjugated alpha-galactose-specific lectin, indicating the presence of alpha-galactose residues on the cell surface. (ii) Galactomannan proteins can be precipitated with agarose-immobilized alpha-galactose-specific lectin from a whole cell lysate prepared from transformed mnn1 cells grown in a galactose medium. (iii) The presence of UDP-galactose transporter was demonstrated by direct transport assay. This transport in S. cerevisiae is dependent on time, temperature, and protein concentration and is inhibited by nucleotide monophosphate and Triton X-100. The overall UDP-galactose transport in S. cerevisiae is comparable with that in S. pombe, indicating a more or less similar reaction velocity, while the rate of GDP-mannose transport is higher in S. pombe than in S. cerevisiae. |
doi_str_mv | 10.1074/jbc.273.5.2583 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_79669650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>79669650</sourcerecordid><originalsourceid>FETCH-LOGICAL-f259t-bf30e22ea7604e43467202cc786af707ff70cd263651ef94f56c2b0799a85f2e3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWj-u3oScvG3Nd5qjqFVBUNCCt2WaTtqV7aYmu4X-CX-zW6x4dA4zh_eZd4aXkHPOhpxZdfUx9UNh5VAPhR7JPTLgbCQLqfn7PhkwJnjheuGIHOf8wfpSjh-SQ6eU0YYNyNe4a3xbxQZqiutqho1HGmKik9uXYg41-DZmpG2CJq9iajHRqqGv4P0CUlxuPGbqMfWruYKeW6TYzRf9xC23rtaR_rpsatgeotDMfrQ2xT9jCjnD5pQcBKgznu3mCZmM795uHoqn5_vHm-unIgjt2mIaJEMhEKxhCpVUxgomvLcjA8EyG_rmZ8JIozkGp4I2XkyZdQ5GOgiUJ-Tyx3eV4meHuS2XVfZY19Bg7HJpnTHOaPYvyI2U21B78GIHdtMlzspVqpaQNuUu6T89QCxhnqpcTl65c5aZ_i0lvwEWR4wM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16330049</pqid></control><display><type>article</type><title>Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Roy, S.K ; Yoko-o, T ; Ikenaga, H ; Jigami, Y</creator><creatorcontrib>Roy, S.K ; Yoko-o, T ; Ikenaga, H ; Jigami, Y</creatorcontrib><description>The oligosaccharide profiles in glycoproteins are determined by a series of processing reactions catalyzed by Golgi glycosyltransferases and glycosidases. Recently in vivo galactose incorporation in Saccharomyces cerevisiae has been demonstrated through the expression of human beta-1,4-galactosyltransferase in an alg1 mutant, suggesting the presence of a UDP-galactose transporter in S. cerevisiae (Schwientek, T., Narimatsu, H., and Ernst, J. F. (1996) J. Biol. Chem. 271, 3398-3405). However, this is quite unexpected, because S. cerevisiae does not have galactose residues in its glycoproteins. To address this question we have constructed S. cerevisiae mnn1 mutant strains expressing Schizosaccharomyces pombe alpha-1,2-galactosyltransferase. The mnn1 mutant of S. cerevisiae provides endogenous acceptors for galactose transfer by the expressed alpha-1,2-galactosyltransferase. We present here three lines of evidences for the existence of UDP-galactose transporter in S. cerevisiae. (i) About 15-20% of the total transformed mnn1 cells grown in a galactose medium were stained with fluorescein isothiocyanate-conjugated alpha-galactose-specific lectin, indicating the presence of alpha-galactose residues on the cell surface. (ii) Galactomannan proteins can be precipitated with agarose-immobilized alpha-galactose-specific lectin from a whole cell lysate prepared from transformed mnn1 cells grown in a galactose medium. (iii) The presence of UDP-galactose transporter was demonstrated by direct transport assay. This transport in S. cerevisiae is dependent on time, temperature, and protein concentration and is inhibited by nucleotide monophosphate and Triton X-100. The overall UDP-galactose transport in S. cerevisiae is comparable with that in S. pombe, indicating a more or less similar reaction velocity, while the rate of GDP-mannose transport is higher in S. pombe than in S. cerevisiae.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.273.5.2583</identifier><identifier>PMID: 9446560</identifier><language>eng</language><publisher>United States</publisher><subject>ACTIVE TRANSPORT ; ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; BINDING PROTEINS ; BIOCHEMISTRY ; BIOCHIMIE ; Biological Transport ; BIOQUIMICA ; CELL MEMBRANES ; CYTOCHEMISTRY ; ENZYMIC ACTIVITY ; FOSFATOS (ESTERES) ; GALACTOMANNANS ; GALACTOSA ; GALACTOSE ; Galactose - metabolism ; GALACTOSYLTRANSFERASE ; Galactosyltransferases - genetics ; Galactosyltransferases - metabolism ; GDP-MANNOSE ; GLICOSILTRANSFERASAS ; GLYCOSYLTRANSFERASE ; GLYCOSYLTRANSFERASES ; Golgi Apparatus - enzymology ; Guanosine Diphosphate Mannose - metabolism ; MANANOS ; MANNANE ; MANNANS ; MANNOSE ; MANOSA ; MEMBRANAS CELULARES ; MEMBRANE CELLULAIRE ; Monosaccharide Transport Proteins - metabolism ; MUTANT ; MUTANTES ; MUTANTS ; Mutation ; NUCLEOTIDE ; NUCLEOTIDES ; NUCLEOTIDOS ; PHOSPHATE (ESTER) ; PHOSPHATES (ESTERS) ; PLASMA MEMBRANES ; PROTEINAS AGLUTINANTES ; PROTEINE DE LIAISON ; Saccharomyces - enzymology ; Saccharomyces - physiology ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - physiology ; SCHIZOSACCHAROMYCES POMBE ; Species Specificity ; Uridine Diphosphate Galactose - metabolism</subject><ispartof>The Journal of biological chemistry, 1998-01, Vol.273 (5), p.2583-2590</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9446560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, S.K</creatorcontrib><creatorcontrib>Yoko-o, T</creatorcontrib><creatorcontrib>Ikenaga, H</creatorcontrib><creatorcontrib>Jigami, Y</creatorcontrib><title>Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The oligosaccharide profiles in glycoproteins are determined by a series of processing reactions catalyzed by Golgi glycosyltransferases and glycosidases. Recently in vivo galactose incorporation in Saccharomyces cerevisiae has been demonstrated through the expression of human beta-1,4-galactosyltransferase in an alg1 mutant, suggesting the presence of a UDP-galactose transporter in S. cerevisiae (Schwientek, T., Narimatsu, H., and Ernst, J. F. (1996) J. Biol. Chem. 271, 3398-3405). However, this is quite unexpected, because S. cerevisiae does not have galactose residues in its glycoproteins. To address this question we have constructed S. cerevisiae mnn1 mutant strains expressing Schizosaccharomyces pombe alpha-1,2-galactosyltransferase. The mnn1 mutant of S. cerevisiae provides endogenous acceptors for galactose transfer by the expressed alpha-1,2-galactosyltransferase. We present here three lines of evidences for the existence of UDP-galactose transporter in S. cerevisiae. (i) About 15-20% of the total transformed mnn1 cells grown in a galactose medium were stained with fluorescein isothiocyanate-conjugated alpha-galactose-specific lectin, indicating the presence of alpha-galactose residues on the cell surface. (ii) Galactomannan proteins can be precipitated with agarose-immobilized alpha-galactose-specific lectin from a whole cell lysate prepared from transformed mnn1 cells grown in a galactose medium. (iii) The presence of UDP-galactose transporter was demonstrated by direct transport assay. This transport in S. cerevisiae is dependent on time, temperature, and protein concentration and is inhibited by nucleotide monophosphate and Triton X-100. The overall UDP-galactose transport in S. cerevisiae is comparable with that in S. pombe, indicating a more or less similar reaction velocity, while the rate of GDP-mannose transport is higher in S. pombe than in S. cerevisiae.</description><subject>ACTIVE TRANSPORT</subject><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>BINDING PROTEINS</subject><subject>BIOCHEMISTRY</subject><subject>BIOCHIMIE</subject><subject>Biological Transport</subject><subject>BIOQUIMICA</subject><subject>CELL MEMBRANES</subject><subject>CYTOCHEMISTRY</subject><subject>ENZYMIC ACTIVITY</subject><subject>FOSFATOS (ESTERES)</subject><subject>GALACTOMANNANS</subject><subject>GALACTOSA</subject><subject>GALACTOSE</subject><subject>Galactose - metabolism</subject><subject>GALACTOSYLTRANSFERASE</subject><subject>Galactosyltransferases - genetics</subject><subject>Galactosyltransferases - metabolism</subject><subject>GDP-MANNOSE</subject><subject>GLICOSILTRANSFERASAS</subject><subject>GLYCOSYLTRANSFERASE</subject><subject>GLYCOSYLTRANSFERASES</subject><subject>Golgi Apparatus - enzymology</subject><subject>Guanosine Diphosphate Mannose - metabolism</subject><subject>MANANOS</subject><subject>MANNANE</subject><subject>MANNANS</subject><subject>MANNOSE</subject><subject>MANOSA</subject><subject>MEMBRANAS CELULARES</subject><subject>MEMBRANE CELLULAIRE</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>NUCLEOTIDE</subject><subject>NUCLEOTIDES</subject><subject>NUCLEOTIDOS</subject><subject>PHOSPHATE (ESTER)</subject><subject>PHOSPHATES (ESTERS)</subject><subject>PLASMA MEMBRANES</subject><subject>PROTEINAS AGLUTINANTES</subject><subject>PROTEINE DE LIAISON</subject><subject>Saccharomyces - enzymology</subject><subject>Saccharomyces - physiology</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>SCHIZOSACCHAROMYCES POMBE</subject><subject>Species Specificity</subject><subject>Uridine Diphosphate Galactose - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMoWj-u3oScvG3Nd5qjqFVBUNCCt2WaTtqV7aYmu4X-CX-zW6x4dA4zh_eZd4aXkHPOhpxZdfUx9UNh5VAPhR7JPTLgbCQLqfn7PhkwJnjheuGIHOf8wfpSjh-SQ6eU0YYNyNe4a3xbxQZqiutqho1HGmKik9uXYg41-DZmpG2CJq9iajHRqqGv4P0CUlxuPGbqMfWruYKeW6TYzRf9xC23rtaR_rpsatgeotDMfrQ2xT9jCjnD5pQcBKgznu3mCZmM795uHoqn5_vHm-unIgjt2mIaJEMhEKxhCpVUxgomvLcjA8EyG_rmZ8JIozkGp4I2XkyZdQ5GOgiUJ-Tyx3eV4meHuS2XVfZY19Bg7HJpnTHOaPYvyI2U21B78GIHdtMlzspVqpaQNuUu6T89QCxhnqpcTl65c5aZ_i0lvwEWR4wM</recordid><startdate>19980130</startdate><enddate>19980130</enddate><creator>Roy, S.K</creator><creator>Yoko-o, T</creator><creator>Ikenaga, H</creator><creator>Jigami, Y</creator><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>19980130</creationdate><title>Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay</title><author>Roy, S.K ; Yoko-o, T ; Ikenaga, H ; Jigami, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f259t-bf30e22ea7604e43467202cc786af707ff70cd263651ef94f56c2b0799a85f2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>ACTIVE TRANSPORT</topic><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>BINDING PROTEINS</topic><topic>BIOCHEMISTRY</topic><topic>BIOCHIMIE</topic><topic>Biological Transport</topic><topic>BIOQUIMICA</topic><topic>CELL MEMBRANES</topic><topic>CYTOCHEMISTRY</topic><topic>ENZYMIC ACTIVITY</topic><topic>FOSFATOS (ESTERES)</topic><topic>GALACTOMANNANS</topic><topic>GALACTOSA</topic><topic>GALACTOSE</topic><topic>Galactose - metabolism</topic><topic>GALACTOSYLTRANSFERASE</topic><topic>Galactosyltransferases - genetics</topic><topic>Galactosyltransferases - metabolism</topic><topic>GDP-MANNOSE</topic><topic>GLICOSILTRANSFERASAS</topic><topic>GLYCOSYLTRANSFERASE</topic><topic>GLYCOSYLTRANSFERASES</topic><topic>Golgi Apparatus - enzymology</topic><topic>Guanosine Diphosphate Mannose - metabolism</topic><topic>MANANOS</topic><topic>MANNANE</topic><topic>MANNANS</topic><topic>MANNOSE</topic><topic>MANOSA</topic><topic>MEMBRANAS CELULARES</topic><topic>MEMBRANE CELLULAIRE</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>NUCLEOTIDE</topic><topic>NUCLEOTIDES</topic><topic>NUCLEOTIDOS</topic><topic>PHOSPHATE (ESTER)</topic><topic>PHOSPHATES (ESTERS)</topic><topic>PLASMA MEMBRANES</topic><topic>PROTEINAS AGLUTINANTES</topic><topic>PROTEINE DE LIAISON</topic><topic>Saccharomyces - enzymology</topic><topic>Saccharomyces - physiology</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>SCHIZOSACCHAROMYCES POMBE</topic><topic>Species Specificity</topic><topic>Uridine Diphosphate Galactose - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, S.K</creatorcontrib><creatorcontrib>Yoko-o, T</creatorcontrib><creatorcontrib>Ikenaga, H</creatorcontrib><creatorcontrib>Jigami, Y</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, S.K</au><au>Yoko-o, T</au><au>Ikenaga, H</au><au>Jigami, Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1998-01-30</date><risdate>1998</risdate><volume>273</volume><issue>5</issue><spage>2583</spage><epage>2590</epage><pages>2583-2590</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The oligosaccharide profiles in glycoproteins are determined by a series of processing reactions catalyzed by Golgi glycosyltransferases and glycosidases. Recently in vivo galactose incorporation in Saccharomyces cerevisiae has been demonstrated through the expression of human beta-1,4-galactosyltransferase in an alg1 mutant, suggesting the presence of a UDP-galactose transporter in S. cerevisiae (Schwientek, T., Narimatsu, H., and Ernst, J. F. (1996) J. Biol. Chem. 271, 3398-3405). However, this is quite unexpected, because S. cerevisiae does not have galactose residues in its glycoproteins. To address this question we have constructed S. cerevisiae mnn1 mutant strains expressing Schizosaccharomyces pombe alpha-1,2-galactosyltransferase. The mnn1 mutant of S. cerevisiae provides endogenous acceptors for galactose transfer by the expressed alpha-1,2-galactosyltransferase. We present here three lines of evidences for the existence of UDP-galactose transporter in S. cerevisiae. (i) About 15-20% of the total transformed mnn1 cells grown in a galactose medium were stained with fluorescein isothiocyanate-conjugated alpha-galactose-specific lectin, indicating the presence of alpha-galactose residues on the cell surface. (ii) Galactomannan proteins can be precipitated with agarose-immobilized alpha-galactose-specific lectin from a whole cell lysate prepared from transformed mnn1 cells grown in a galactose medium. (iii) The presence of UDP-galactose transporter was demonstrated by direct transport assay. This transport in S. cerevisiae is dependent on time, temperature, and protein concentration and is inhibited by nucleotide monophosphate and Triton X-100. The overall UDP-galactose transport in S. cerevisiae is comparable with that in S. pombe, indicating a more or less similar reaction velocity, while the rate of GDP-mannose transport is higher in S. pombe than in S. cerevisiae.</abstract><cop>United States</cop><pmid>9446560</pmid><doi>10.1074/jbc.273.5.2583</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1998-01, Vol.273 (5), p.2583-2590 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_79669650 |
source | MEDLINE; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | ACTIVE TRANSPORT ACTIVIDAD ENZIMATICA ACTIVITE ENZYMATIQUE BINDING PROTEINS BIOCHEMISTRY BIOCHIMIE Biological Transport BIOQUIMICA CELL MEMBRANES CYTOCHEMISTRY ENZYMIC ACTIVITY FOSFATOS (ESTERES) GALACTOMANNANS GALACTOSA GALACTOSE Galactose - metabolism GALACTOSYLTRANSFERASE Galactosyltransferases - genetics Galactosyltransferases - metabolism GDP-MANNOSE GLICOSILTRANSFERASAS GLYCOSYLTRANSFERASE GLYCOSYLTRANSFERASES Golgi Apparatus - enzymology Guanosine Diphosphate Mannose - metabolism MANANOS MANNANE MANNANS MANNOSE MANOSA MEMBRANAS CELULARES MEMBRANE CELLULAIRE Monosaccharide Transport Proteins - metabolism MUTANT MUTANTES MUTANTS Mutation NUCLEOTIDE NUCLEOTIDES NUCLEOTIDOS PHOSPHATE (ESTER) PHOSPHATES (ESTERS) PLASMA MEMBRANES PROTEINAS AGLUTINANTES PROTEINE DE LIAISON Saccharomyces - enzymology Saccharomyces - physiology SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - physiology SCHIZOSACCHAROMYCES POMBE Species Specificity Uridine Diphosphate Galactose - metabolism |
title | Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20evidence%20for%20UDP-galactose%20transporter%20in%20Saccharomyces%20cerevisiae%20through%20the%20in%20vivo%20galactosylation%20and%20in%20vitro%20transport%20assay&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Roy,%20S.K&rft.date=1998-01-30&rft.volume=273&rft.issue=5&rft.spage=2583&rft.epage=2590&rft.pages=2583-2590&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.273.5.2583&rft_dat=%3Cproquest_pubme%3E79669650%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16330049&rft_id=info:pmid/9446560&rfr_iscdi=true |