Flammulina as a model system for fungal graviresponses

Gravitropic bending of fruiting bodies of Flammulina velutipes (Curtis) Karst. is based on the differential growth of the transition zone between stem and cap. Reorientation becomes visible as early as 2 h after displacing the fruiting body from the vertical to the horizontal position. It is precede...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 1997-01, Vol.203 (Suppl 1), p.S23-S32
Hauptverfasser: Kern, V.D, Mendgen, K, Hock, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S32
container_issue Suppl 1
container_start_page S23
container_title Planta
container_volume 203
creator Kern, V.D
Mendgen, K
Hock, B
description Gravitropic bending of fruiting bodies of Flammulina velutipes (Curtis) Karst. is based on the differential growth of the transition zone between stem and cap. Reorientation becomes visible as early as 2 h after displacing the fruiting body from the vertical to the horizontal position. It is preceded by a preferential accumulation of microvesicles within the hyphae on the lower side of the transition zone and related to an increase in the vacuolar compartment required for hyphal extension. A model made of a bundle of interconnected balloons is used to demonstrate that a differential volume increase at one flank is sufficient to bend the entire structure in the opposite direction. Gravitropic raising of intact stems or segments derived from the transition zone requires positional information which can be accomplished by three major, coordinated events: (i) gravisensing by the individual hyphae within the transition zone, (ii) unidirectional signalling by means of a soluble growth factor creating a vertical concentration gradient, and (iii) translation of the concentration signal into elongation growth.
doi_str_mv 10.1007/pl00008111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_79644075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23385094</jstor_id><sourcerecordid>23385094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-7276e455ed1414e0153ba0b9c2bc3deeafe1fd8ff87c23fe57096df15f0d8fba3</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMoun5cvKs9iAdhddIkm_Yo4hcsKOiey7SdLF3Sds1shf33RnbVuWTI8_AOvEKcSriRAPZ26SFOJqXcESOpVTpOQWe7YgQQd8iVORCHzAuACK3dFwdSGh1ZNhKTR49tO_imwwQ5waTta_IJr3lFbeL6kLihm6NP5gG_mkC87DsmPhZ7Dj3TyfY9ErPHh4_75_H09enl_m46rlSuV2Ob2glpY6iWWmoCaVSJUOZVWlaqJkJH0tWZc5mtUuXIWMgntZPGQfwtUR2Jq03uMvSfA_GqaBuuyHvsqB-4sPlEa7AmitcbsQo9cyBXLEPTYlgXEoqfloq36W9LUT7fpg5lS_W_uq0lCpdbAblC7wJ2VcN_XmrzeNJG7WyjLXjVh3-sVGYg15FfbLjDvsB5iBGz9xSkgjSzyuagvgHZpIEy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79644075</pqid></control><display><type>article</type><title>Flammulina as a model system for fungal graviresponses</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kern, V.D ; Mendgen, K ; Hock, B</creator><creatorcontrib>Kern, V.D ; Mendgen, K ; Hock, B</creatorcontrib><description>Gravitropic bending of fruiting bodies of Flammulina velutipes (Curtis) Karst. is based on the differential growth of the transition zone between stem and cap. Reorientation becomes visible as early as 2 h after displacing the fruiting body from the vertical to the horizontal position. It is preceded by a preferential accumulation of microvesicles within the hyphae on the lower side of the transition zone and related to an increase in the vacuolar compartment required for hyphal extension. A model made of a bundle of interconnected balloons is used to demonstrate that a differential volume increase at one flank is sufficient to bend the entire structure in the opposite direction. Gravitropic raising of intact stems or segments derived from the transition zone requires positional information which can be accomplished by three major, coordinated events: (i) gravisensing by the individual hyphae within the transition zone, (ii) unidirectional signalling by means of a soluble growth factor creating a vertical concentration gradient, and (iii) translation of the concentration signal into elongation growth.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/pl00008111</identifier><identifier>PMID: 11540328</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin: Springer-Verlag</publisher><subject>Basidiomycota - growth &amp; development ; Basidiomycota - physiology ; Basidiomycota - ultrastructure ; Bending ; Biological and medical sciences ; cell growth ; Cell membranes ; Flammulina ; Flammulina velutipes ; Fruiting bodies ; Fundamental and applied biological sciences. Psychology ; fungal anatomy ; Fungi ; Gravitropism ; Gravitropism - physiology ; Gravity perception ; Gravity Sensing - physiology ; Hyphae ; Microscopy, Electron ; Movements ; Plant Physiological Phenomena ; Plant physiology and development ; Plant Stems - growth &amp; development ; Plant Stems - physiology ; Plant Stems - ultrastructure ; position ; receptors ; Signal Transduction - physiology ; Space life sciences ; Transition zones ; Vacuoles ; vesicles ; volume</subject><ispartof>Planta, 1997-01, Vol.203 (Suppl 1), p.S23-S32</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-7276e455ed1414e0153ba0b9c2bc3deeafe1fd8ff87c23fe57096df15f0d8fba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23385094$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23385094$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,803,23929,23930,25139,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2797537$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11540328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kern, V.D</creatorcontrib><creatorcontrib>Mendgen, K</creatorcontrib><creatorcontrib>Hock, B</creatorcontrib><title>Flammulina as a model system for fungal graviresponses</title><title>Planta</title><addtitle>Planta</addtitle><description>Gravitropic bending of fruiting bodies of Flammulina velutipes (Curtis) Karst. is based on the differential growth of the transition zone between stem and cap. Reorientation becomes visible as early as 2 h after displacing the fruiting body from the vertical to the horizontal position. It is preceded by a preferential accumulation of microvesicles within the hyphae on the lower side of the transition zone and related to an increase in the vacuolar compartment required for hyphal extension. A model made of a bundle of interconnected balloons is used to demonstrate that a differential volume increase at one flank is sufficient to bend the entire structure in the opposite direction. Gravitropic raising of intact stems or segments derived from the transition zone requires positional information which can be accomplished by three major, coordinated events: (i) gravisensing by the individual hyphae within the transition zone, (ii) unidirectional signalling by means of a soluble growth factor creating a vertical concentration gradient, and (iii) translation of the concentration signal into elongation growth.</description><subject>Basidiomycota - growth &amp; development</subject><subject>Basidiomycota - physiology</subject><subject>Basidiomycota - ultrastructure</subject><subject>Bending</subject><subject>Biological and medical sciences</subject><subject>cell growth</subject><subject>Cell membranes</subject><subject>Flammulina</subject><subject>Flammulina velutipes</subject><subject>Fruiting bodies</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>fungal anatomy</subject><subject>Fungi</subject><subject>Gravitropism</subject><subject>Gravitropism - physiology</subject><subject>Gravity perception</subject><subject>Gravity Sensing - physiology</subject><subject>Hyphae</subject><subject>Microscopy, Electron</subject><subject>Movements</subject><subject>Plant Physiological Phenomena</subject><subject>Plant physiology and development</subject><subject>Plant Stems - growth &amp; development</subject><subject>Plant Stems - physiology</subject><subject>Plant Stems - ultrastructure</subject><subject>position</subject><subject>receptors</subject><subject>Signal Transduction - physiology</subject><subject>Space life sciences</subject><subject>Transition zones</subject><subject>Vacuoles</subject><subject>vesicles</subject><subject>volume</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAQhoMoun5cvKs9iAdhddIkm_Yo4hcsKOiey7SdLF3Sds1shf33RnbVuWTI8_AOvEKcSriRAPZ26SFOJqXcESOpVTpOQWe7YgQQd8iVORCHzAuACK3dFwdSGh1ZNhKTR49tO_imwwQ5waTta_IJr3lFbeL6kLihm6NP5gG_mkC87DsmPhZ7Dj3TyfY9ErPHh4_75_H09enl_m46rlSuV2Ob2glpY6iWWmoCaVSJUOZVWlaqJkJH0tWZc5mtUuXIWMgntZPGQfwtUR2Jq03uMvSfA_GqaBuuyHvsqB-4sPlEa7AmitcbsQo9cyBXLEPTYlgXEoqfloq36W9LUT7fpg5lS_W_uq0lCpdbAblC7wJ2VcN_XmrzeNJG7WyjLXjVh3-sVGYg15FfbLjDvsB5iBGz9xSkgjSzyuagvgHZpIEy</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Kern, V.D</creator><creator>Mendgen, K</creator><creator>Hock, B</creator><general>Springer-Verlag</general><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19970101</creationdate><title>Flammulina as a model system for fungal graviresponses</title><author>Kern, V.D ; Mendgen, K ; Hock, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-7276e455ed1414e0153ba0b9c2bc3deeafe1fd8ff87c23fe57096df15f0d8fba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Basidiomycota - growth &amp; development</topic><topic>Basidiomycota - physiology</topic><topic>Basidiomycota - ultrastructure</topic><topic>Bending</topic><topic>Biological and medical sciences</topic><topic>cell growth</topic><topic>Cell membranes</topic><topic>Flammulina</topic><topic>Flammulina velutipes</topic><topic>Fruiting bodies</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>fungal anatomy</topic><topic>Fungi</topic><topic>Gravitropism</topic><topic>Gravitropism - physiology</topic><topic>Gravity perception</topic><topic>Gravity Sensing - physiology</topic><topic>Hyphae</topic><topic>Microscopy, Electron</topic><topic>Movements</topic><topic>Plant Physiological Phenomena</topic><topic>Plant physiology and development</topic><topic>Plant Stems - growth &amp; development</topic><topic>Plant Stems - physiology</topic><topic>Plant Stems - ultrastructure</topic><topic>position</topic><topic>receptors</topic><topic>Signal Transduction - physiology</topic><topic>Space life sciences</topic><topic>Transition zones</topic><topic>Vacuoles</topic><topic>vesicles</topic><topic>volume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kern, V.D</creatorcontrib><creatorcontrib>Mendgen, K</creatorcontrib><creatorcontrib>Hock, B</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kern, V.D</au><au>Mendgen, K</au><au>Hock, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flammulina as a model system for fungal graviresponses</atitle><jtitle>Planta</jtitle><addtitle>Planta</addtitle><date>1997-01-01</date><risdate>1997</risdate><volume>203</volume><issue>Suppl 1</issue><spage>S23</spage><epage>S32</epage><pages>S23-S32</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>Gravitropic bending of fruiting bodies of Flammulina velutipes (Curtis) Karst. is based on the differential growth of the transition zone between stem and cap. Reorientation becomes visible as early as 2 h after displacing the fruiting body from the vertical to the horizontal position. It is preceded by a preferential accumulation of microvesicles within the hyphae on the lower side of the transition zone and related to an increase in the vacuolar compartment required for hyphal extension. A model made of a bundle of interconnected balloons is used to demonstrate that a differential volume increase at one flank is sufficient to bend the entire structure in the opposite direction. Gravitropic raising of intact stems or segments derived from the transition zone requires positional information which can be accomplished by three major, coordinated events: (i) gravisensing by the individual hyphae within the transition zone, (ii) unidirectional signalling by means of a soluble growth factor creating a vertical concentration gradient, and (iii) translation of the concentration signal into elongation growth.</abstract><cop>Berlin</cop><pub>Springer-Verlag</pub><pmid>11540328</pmid><doi>10.1007/pl00008111</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 1997-01, Vol.203 (Suppl 1), p.S23-S32
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_79644075
source MEDLINE; JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings
subjects Basidiomycota - growth & development
Basidiomycota - physiology
Basidiomycota - ultrastructure
Bending
Biological and medical sciences
cell growth
Cell membranes
Flammulina
Flammulina velutipes
Fruiting bodies
Fundamental and applied biological sciences. Psychology
fungal anatomy
Fungi
Gravitropism
Gravitropism - physiology
Gravity perception
Gravity Sensing - physiology
Hyphae
Microscopy, Electron
Movements
Plant Physiological Phenomena
Plant physiology and development
Plant Stems - growth & development
Plant Stems - physiology
Plant Stems - ultrastructure
position
receptors
Signal Transduction - physiology
Space life sciences
Transition zones
Vacuoles
vesicles
volume
title Flammulina as a model system for fungal graviresponses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flammulina%20as%20a%20model%20system%20for%20fungal%20graviresponses&rft.jtitle=Planta&rft.au=Kern,%20V.D&rft.date=1997-01-01&rft.volume=203&rft.issue=Suppl%201&rft.spage=S23&rft.epage=S32&rft.pages=S23-S32&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/pl00008111&rft_dat=%3Cjstor_proqu%3E23385094%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79644075&rft_id=info:pmid/11540328&rft_jstor_id=23385094&rfr_iscdi=true