Flammulina as a model system for fungal graviresponses
Gravitropic bending of fruiting bodies of Flammulina velutipes (Curtis) Karst. is based on the differential growth of the transition zone between stem and cap. Reorientation becomes visible as early as 2 h after displacing the fruiting body from the vertical to the horizontal position. It is precede...
Gespeichert in:
Veröffentlicht in: | Planta 1997-01, Vol.203 (Suppl 1), p.S23-S32 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S32 |
---|---|
container_issue | Suppl 1 |
container_start_page | S23 |
container_title | Planta |
container_volume | 203 |
creator | Kern, V.D Mendgen, K Hock, B |
description | Gravitropic bending of fruiting bodies of Flammulina velutipes (Curtis) Karst. is based on the differential growth of the transition zone between stem and cap. Reorientation becomes visible as early as 2 h after displacing the fruiting body from the vertical to the horizontal position. It is preceded by a preferential accumulation of microvesicles within the hyphae on the lower side of the transition zone and related to an increase in the vacuolar compartment required for hyphal extension. A model made of a bundle of interconnected balloons is used to demonstrate that a differential volume increase at one flank is sufficient to bend the entire structure in the opposite direction. Gravitropic raising of intact stems or segments derived from the transition zone requires positional information which can be accomplished by three major, coordinated events: (i) gravisensing by the individual hyphae within the transition zone, (ii) unidirectional signalling by means of a soluble growth factor creating a vertical concentration gradient, and (iii) translation of the concentration signal into elongation growth. |
doi_str_mv | 10.1007/pl00008111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_79644075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23385094</jstor_id><sourcerecordid>23385094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-7276e455ed1414e0153ba0b9c2bc3deeafe1fd8ff87c23fe57096df15f0d8fba3</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMoun5cvKs9iAdhddIkm_Yo4hcsKOiey7SdLF3Sds1shf33RnbVuWTI8_AOvEKcSriRAPZ26SFOJqXcESOpVTpOQWe7YgQQd8iVORCHzAuACK3dFwdSGh1ZNhKTR49tO_imwwQ5waTta_IJr3lFbeL6kLihm6NP5gG_mkC87DsmPhZ7Dj3TyfY9ErPHh4_75_H09enl_m46rlSuV2Ob2glpY6iWWmoCaVSJUOZVWlaqJkJH0tWZc5mtUuXIWMgntZPGQfwtUR2Jq03uMvSfA_GqaBuuyHvsqB-4sPlEa7AmitcbsQo9cyBXLEPTYlgXEoqfloq36W9LUT7fpg5lS_W_uq0lCpdbAblC7wJ2VcN_XmrzeNJG7WyjLXjVh3-sVGYg15FfbLjDvsB5iBGz9xSkgjSzyuagvgHZpIEy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79644075</pqid></control><display><type>article</type><title>Flammulina as a model system for fungal graviresponses</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kern, V.D ; Mendgen, K ; Hock, B</creator><creatorcontrib>Kern, V.D ; Mendgen, K ; Hock, B</creatorcontrib><description>Gravitropic bending of fruiting bodies of Flammulina velutipes (Curtis) Karst. is based on the differential growth of the transition zone between stem and cap. Reorientation becomes visible as early as 2 h after displacing the fruiting body from the vertical to the horizontal position. It is preceded by a preferential accumulation of microvesicles within the hyphae on the lower side of the transition zone and related to an increase in the vacuolar compartment required for hyphal extension. A model made of a bundle of interconnected balloons is used to demonstrate that a differential volume increase at one flank is sufficient to bend the entire structure in the opposite direction. Gravitropic raising of intact stems or segments derived from the transition zone requires positional information which can be accomplished by three major, coordinated events: (i) gravisensing by the individual hyphae within the transition zone, (ii) unidirectional signalling by means of a soluble growth factor creating a vertical concentration gradient, and (iii) translation of the concentration signal into elongation growth.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/pl00008111</identifier><identifier>PMID: 11540328</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin: Springer-Verlag</publisher><subject>Basidiomycota - growth & development ; Basidiomycota - physiology ; Basidiomycota - ultrastructure ; Bending ; Biological and medical sciences ; cell growth ; Cell membranes ; Flammulina ; Flammulina velutipes ; Fruiting bodies ; Fundamental and applied biological sciences. Psychology ; fungal anatomy ; Fungi ; Gravitropism ; Gravitropism - physiology ; Gravity perception ; Gravity Sensing - physiology ; Hyphae ; Microscopy, Electron ; Movements ; Plant Physiological Phenomena ; Plant physiology and development ; Plant Stems - growth & development ; Plant Stems - physiology ; Plant Stems - ultrastructure ; position ; receptors ; Signal Transduction - physiology ; Space life sciences ; Transition zones ; Vacuoles ; vesicles ; volume</subject><ispartof>Planta, 1997-01, Vol.203 (Suppl 1), p.S23-S32</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-7276e455ed1414e0153ba0b9c2bc3deeafe1fd8ff87c23fe57096df15f0d8fba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23385094$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23385094$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,803,23929,23930,25139,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2797537$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11540328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kern, V.D</creatorcontrib><creatorcontrib>Mendgen, K</creatorcontrib><creatorcontrib>Hock, B</creatorcontrib><title>Flammulina as a model system for fungal graviresponses</title><title>Planta</title><addtitle>Planta</addtitle><description>Gravitropic bending of fruiting bodies of Flammulina velutipes (Curtis) Karst. is based on the differential growth of the transition zone between stem and cap. Reorientation becomes visible as early as 2 h after displacing the fruiting body from the vertical to the horizontal position. It is preceded by a preferential accumulation of microvesicles within the hyphae on the lower side of the transition zone and related to an increase in the vacuolar compartment required for hyphal extension. A model made of a bundle of interconnected balloons is used to demonstrate that a differential volume increase at one flank is sufficient to bend the entire structure in the opposite direction. Gravitropic raising of intact stems or segments derived from the transition zone requires positional information which can be accomplished by three major, coordinated events: (i) gravisensing by the individual hyphae within the transition zone, (ii) unidirectional signalling by means of a soluble growth factor creating a vertical concentration gradient, and (iii) translation of the concentration signal into elongation growth.</description><subject>Basidiomycota - growth & development</subject><subject>Basidiomycota - physiology</subject><subject>Basidiomycota - ultrastructure</subject><subject>Bending</subject><subject>Biological and medical sciences</subject><subject>cell growth</subject><subject>Cell membranes</subject><subject>Flammulina</subject><subject>Flammulina velutipes</subject><subject>Fruiting bodies</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>fungal anatomy</subject><subject>Fungi</subject><subject>Gravitropism</subject><subject>Gravitropism - physiology</subject><subject>Gravity perception</subject><subject>Gravity Sensing - physiology</subject><subject>Hyphae</subject><subject>Microscopy, Electron</subject><subject>Movements</subject><subject>Plant Physiological Phenomena</subject><subject>Plant physiology and development</subject><subject>Plant Stems - growth & development</subject><subject>Plant Stems - physiology</subject><subject>Plant Stems - ultrastructure</subject><subject>position</subject><subject>receptors</subject><subject>Signal Transduction - physiology</subject><subject>Space life sciences</subject><subject>Transition zones</subject><subject>Vacuoles</subject><subject>vesicles</subject><subject>volume</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAQhoMoun5cvKs9iAdhddIkm_Yo4hcsKOiey7SdLF3Sds1shf33RnbVuWTI8_AOvEKcSriRAPZ26SFOJqXcESOpVTpOQWe7YgQQd8iVORCHzAuACK3dFwdSGh1ZNhKTR49tO_imwwQ5waTta_IJr3lFbeL6kLihm6NP5gG_mkC87DsmPhZ7Dj3TyfY9ErPHh4_75_H09enl_m46rlSuV2Ob2glpY6iWWmoCaVSJUOZVWlaqJkJH0tWZc5mtUuXIWMgntZPGQfwtUR2Jq03uMvSfA_GqaBuuyHvsqB-4sPlEa7AmitcbsQo9cyBXLEPTYlgXEoqfloq36W9LUT7fpg5lS_W_uq0lCpdbAblC7wJ2VcN_XmrzeNJG7WyjLXjVh3-sVGYg15FfbLjDvsB5iBGz9xSkgjSzyuagvgHZpIEy</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Kern, V.D</creator><creator>Mendgen, K</creator><creator>Hock, B</creator><general>Springer-Verlag</general><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19970101</creationdate><title>Flammulina as a model system for fungal graviresponses</title><author>Kern, V.D ; Mendgen, K ; Hock, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-7276e455ed1414e0153ba0b9c2bc3deeafe1fd8ff87c23fe57096df15f0d8fba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Basidiomycota - growth & development</topic><topic>Basidiomycota - physiology</topic><topic>Basidiomycota - ultrastructure</topic><topic>Bending</topic><topic>Biological and medical sciences</topic><topic>cell growth</topic><topic>Cell membranes</topic><topic>Flammulina</topic><topic>Flammulina velutipes</topic><topic>Fruiting bodies</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>fungal anatomy</topic><topic>Fungi</topic><topic>Gravitropism</topic><topic>Gravitropism - physiology</topic><topic>Gravity perception</topic><topic>Gravity Sensing - physiology</topic><topic>Hyphae</topic><topic>Microscopy, Electron</topic><topic>Movements</topic><topic>Plant Physiological Phenomena</topic><topic>Plant physiology and development</topic><topic>Plant Stems - growth & development</topic><topic>Plant Stems - physiology</topic><topic>Plant Stems - ultrastructure</topic><topic>position</topic><topic>receptors</topic><topic>Signal Transduction - physiology</topic><topic>Space life sciences</topic><topic>Transition zones</topic><topic>Vacuoles</topic><topic>vesicles</topic><topic>volume</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kern, V.D</creatorcontrib><creatorcontrib>Mendgen, K</creatorcontrib><creatorcontrib>Hock, B</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kern, V.D</au><au>Mendgen, K</au><au>Hock, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flammulina as a model system for fungal graviresponses</atitle><jtitle>Planta</jtitle><addtitle>Planta</addtitle><date>1997-01-01</date><risdate>1997</risdate><volume>203</volume><issue>Suppl 1</issue><spage>S23</spage><epage>S32</epage><pages>S23-S32</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>Gravitropic bending of fruiting bodies of Flammulina velutipes (Curtis) Karst. is based on the differential growth of the transition zone between stem and cap. Reorientation becomes visible as early as 2 h after displacing the fruiting body from the vertical to the horizontal position. It is preceded by a preferential accumulation of microvesicles within the hyphae on the lower side of the transition zone and related to an increase in the vacuolar compartment required for hyphal extension. A model made of a bundle of interconnected balloons is used to demonstrate that a differential volume increase at one flank is sufficient to bend the entire structure in the opposite direction. Gravitropic raising of intact stems or segments derived from the transition zone requires positional information which can be accomplished by three major, coordinated events: (i) gravisensing by the individual hyphae within the transition zone, (ii) unidirectional signalling by means of a soluble growth factor creating a vertical concentration gradient, and (iii) translation of the concentration signal into elongation growth.</abstract><cop>Berlin</cop><pub>Springer-Verlag</pub><pmid>11540328</pmid><doi>10.1007/pl00008111</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 1997-01, Vol.203 (Suppl 1), p.S23-S32 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_79644075 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings |
subjects | Basidiomycota - growth & development Basidiomycota - physiology Basidiomycota - ultrastructure Bending Biological and medical sciences cell growth Cell membranes Flammulina Flammulina velutipes Fruiting bodies Fundamental and applied biological sciences. Psychology fungal anatomy Fungi Gravitropism Gravitropism - physiology Gravity perception Gravity Sensing - physiology Hyphae Microscopy, Electron Movements Plant Physiological Phenomena Plant physiology and development Plant Stems - growth & development Plant Stems - physiology Plant Stems - ultrastructure position receptors Signal Transduction - physiology Space life sciences Transition zones Vacuoles vesicles volume |
title | Flammulina as a model system for fungal graviresponses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A33%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flammulina%20as%20a%20model%20system%20for%20fungal%20graviresponses&rft.jtitle=Planta&rft.au=Kern,%20V.D&rft.date=1997-01-01&rft.volume=203&rft.issue=Suppl%201&rft.spage=S23&rft.epage=S32&rft.pages=S23-S32&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/pl00008111&rft_dat=%3Cjstor_proqu%3E23385094%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79644075&rft_id=info:pmid/11540328&rft_jstor_id=23385094&rfr_iscdi=true |