Peptide Mimics as Substrates for the Intestinal Peptide Transporter

4-Aminophenylacetic acid (4-APAA), a peptide mimic lacking a peptide bond, has been shown to interact with a proton-coupled oligopeptide transporter using a number of different experimental approaches. In addition to inhibiting transport of labeled peptides, these studies show that 4-APAA is itself...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-01, Vol.273 (1), p.20-22
Hauptverfasser: Temple, Catherine S., Stewart, Andrew K., Meredith, David, Lister, Norma A., Morgan, Keith M., Collier, Ian D., Vaughan-Jones, Richard D., Boyd, C. A.R., Bailey, Patrick D., Bronk, J. Ramsey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:4-Aminophenylacetic acid (4-APAA), a peptide mimic lacking a peptide bond, has been shown to interact with a proton-coupled oligopeptide transporter using a number of different experimental approaches. In addition to inhibiting transport of labeled peptides, these studies show that 4-APAA is itself translocated. 4-APAA transport across the rat intact intestine was stimulated 18-fold by luminal acidification (to pH 6.8) as determined by high performance liquid chromatography (HPLC); in enterocytes isolated from mouse small intestine the intracellular pH was reduced on application of 4-APAA, as shown fluorimetrically with the pH indicator carboxy-SNARF; 4-APAAtrans-stimulated radiolabeled peptide transport in brush-border membrane vesicles isolated from rat renal cortex; and inXenopus oocytes expressing PepT1, 4-APAA producedtrans-stimulation of radiolabeled peptide efflux, and as determined by HPLC, was a substrate for translocation by this transporter. These results with 4-APAA show for the first time that the presence of a peptide bond is not a requirement for rapid translocation through the proton-linked oligopeptide transporter (PepT1). Further investigation will be needed to determine the minimal structural requirements for a molecule to be a substrate for this transporter.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.1.20